forked from ArduPilot/ardupilot
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsystem.cpp
801 lines (667 loc) · 21.1 KB
/
system.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Plane.h"
/*****************************************************************************
* The init_ardupilot function processes everything we need for an in - air restart
* We will determine later if we are actually on the ground and process a
* ground start in that case.
*
*****************************************************************************/
#if CLI_ENABLED == ENABLED
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
int8_t Plane::main_menu_help(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("Commands:\n"
" logs log readback/setup mode\n"
" setup setup mode\n"
" test test mode\n"
" reboot reboot to flight mode\n"
"\n"));
return(0);
}
// Command/function table for the top-level menu.
static const struct Menu::command main_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"logs", MENU_FUNC(process_logs)},
{"setup", MENU_FUNC(setup_mode)},
{"test", MENU_FUNC(test_mode)},
{"reboot", MENU_FUNC(reboot_board)},
{"help", MENU_FUNC(main_menu_help)},
};
// Create the top-level menu object.
MENU(main_menu, THISFIRMWARE, main_menu_commands);
int8_t Plane::reboot_board(uint8_t argc, const Menu::arg *argv)
{
hal.scheduler->reboot(false);
return 0;
}
// the user wants the CLI. It never exits
void Plane::run_cli(AP_HAL::UARTDriver *port)
{
// disable the failsafe code in the CLI
hal.scheduler->register_timer_failsafe(NULL,1);
// disable the mavlink delay callback
hal.scheduler->register_delay_callback(NULL, 5);
cliSerial = port;
Menu::set_port(port);
port->set_blocking_writes(true);
while (1) {
main_menu.run();
}
}
#endif // CLI_ENABLED
static void mavlink_delay_cb_static()
{
plane.mavlink_delay_cb();
}
static void failsafe_check_static()
{
plane.failsafe_check();
}
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
AP_ADC_ADS7844 apm1_adc;
#endif
void Plane::init_ardupilot()
{
// initialise serial port
serial_manager.init_console();
cliSerial->printf_P(PSTR("\n\nInit " FIRMWARE_STRING
"\n\nFree RAM: %u\n"),
hal.util->available_memory());
//
// Check the EEPROM format version before loading any parameters from EEPROM
//
load_parameters();
if (g.hil_mode == 1) {
// set sensors to HIL mode
ins.set_hil_mode();
compass.set_hil_mode();
barometer.set_hil_mode();
}
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
// this must be before BoardConfig.init() so if
// BRD_SAFETYENABLE==0 then we don't have safety off yet
for (uint8_t tries=0; tries<10; tries++) {
if (setup_failsafe_mixing()) {
break;
}
hal.scheduler->delay(10);
}
#endif
BoardConfig.init();
// initialise serial ports
serial_manager.init();
// allow servo set on all channels except first 4
ServoRelayEvents.set_channel_mask(0xFFF0);
set_control_channels();
// keep a record of how many resets have happened. This can be
// used to detect in-flight resets
g.num_resets.set_and_save(g.num_resets+1);
// init baro before we start the GCS, so that the CLI baro test works
barometer.init();
// initialise rangefinder
init_rangefinder();
// initialise battery monitoring
battery.init();
// init the GCS
gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0);
// we start by assuming USB connected, as we initialed the serial
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
usb_connected = true;
check_usb_mux();
// setup serial port for telem1
gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0);
#if MAVLINK_COMM_NUM_BUFFERS > 2
// setup serial port for telem2
gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1);
#endif
#if MAVLINK_COMM_NUM_BUFFERS > 3
// setup serial port for fourth telemetry port (not used by default)
gcs[3].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 2);
#endif
// setup frsky
#if FRSKY_TELEM_ENABLED == ENABLED
frsky_telemetry.init(serial_manager);
#endif
mavlink_system.sysid = g.sysid_this_mav;
#if LOGGING_ENABLED == ENABLED
log_init();
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
apm1_adc.Init(); // APM ADC library initialization
#endif
// initialise airspeed sensor
airspeed.init();
if (g.compass_enabled==true) {
if (!compass.init() || !compass.read()) {
cliSerial->println_P(PSTR("Compass initialisation failed!"));
g.compass_enabled = false;
} else {
ahrs.set_compass(&compass);
}
}
#if OPTFLOW == ENABLED
// make optflow available to libraries
ahrs.set_optflow(&optflow);
#endif
// Register mavlink_delay_cb, which will run anytime you have
// more than 5ms remaining in your call to hal.scheduler->delay
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);
// give AHRS the airspeed sensor
ahrs.set_airspeed(&airspeed);
// GPS Initialization
gps.init(&DataFlash, serial_manager);
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up the timer libs
relay.init();
#if MOUNT == ENABLED
// initialise camera mount
camera_mount.init(serial_manager);
#endif
#if FENCE_TRIGGERED_PIN > 0
hal.gpio->pinMode(FENCE_TRIGGERED_PIN, HAL_GPIO_OUTPUT);
hal.gpio->write(FENCE_TRIGGERED_PIN, 0);
#endif
/*
* setup the 'main loop is dead' check. Note that this relies on
* the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
#if CLI_ENABLED == ENABLED
if (g.cli_enabled == 1) {
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n");
cliSerial->println_P(msg);
if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) {
gcs[1].get_uart()->println_P(msg);
}
if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) {
gcs[2].get_uart()->println_P(msg);
}
}
#endif // CLI_ENABLED
startup_ground();
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
// choose the nav controller
set_nav_controller();
set_mode((FlightMode)g.initial_mode.get());
// set the correct flight mode
// ---------------------------
reset_control_switch();
// initialise sensor
#if OPTFLOW == ENABLED
optflow.init();
#endif
}
//********************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//********************************************************************************
void Plane::startup_ground(void)
{
set_mode(INITIALISING);
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> GROUND START"));
#if (GROUND_START_DELAY > 0)
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> With Delay"));
delay(GROUND_START_DELAY * 1000);
#endif
// Makes the servos wiggle
// step 1 = 1 wiggle
// -----------------------
if (!g.skip_gyro_cal) {
demo_servos(1);
}
//INS ground start
//------------------------
//
startup_INS_ground();
// read the radio to set trims
// ---------------------------
if (g.trim_rc_at_start != 0) {
trim_radio();
}
// Save the settings for in-air restart
// ------------------------------------
//save_EEPROM_groundstart();
// initialise mission library
mission.init();
// Makes the servos wiggle - 3 times signals ready to fly
// -----------------------
if (!g.skip_gyro_cal) {
demo_servos(3);
}
// reset last heartbeat time, so we don't trigger failsafe on slow
// startup
failsafe.last_heartbeat_ms = millis();
// we don't want writes to the serial port to cause us to pause
// mid-flight, so set the serial ports non-blocking once we are
// ready to fly
serial_manager.set_blocking_writes_all(false);
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
ins.set_dataflash(&DataFlash);
gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to FLY."));
}
enum FlightMode Plane::get_previous_mode() {
return previous_mode;
}
void Plane::set_mode(enum FlightMode mode)
{
if(control_mode == mode) {
// don't switch modes if we are already in the correct mode.
return;
}
if(g.auto_trim > 0 && control_mode == MANUAL)
trim_control_surfaces();
// perform any cleanup required for prev flight mode
exit_mode(control_mode);
// cancel inverted flight
auto_state.inverted_flight = false;
// don't cross-track when starting a mission
auto_state.next_wp_no_crosstrack = true;
// reset landing check
auto_state.checked_for_autoland = false;
// reset go around command
auto_state.commanded_go_around = false;
// zero locked course
steer_state.locked_course_err = 0;
// set mode
previous_mode = control_mode;
control_mode = mode;
if (previous_mode == AUTOTUNE && control_mode != AUTOTUNE) {
// restore last gains
autotune_restore();
}
// zero initial pitch and highest airspeed on mode change
auto_state.highest_airspeed = 0;
auto_state.initial_pitch_cd = ahrs.pitch_sensor;
// disable taildrag takeoff on mode change
auto_state.fbwa_tdrag_takeoff_mode = false;
switch(control_mode)
{
case INITIALISING:
auto_throttle_mode = true;
break;
case MANUAL:
case STABILIZE:
case TRAINING:
case FLY_BY_WIRE_A:
auto_throttle_mode = false;
break;
case AUTOTUNE:
auto_throttle_mode = false;
autotune_start();
break;
case ACRO:
auto_throttle_mode = false;
acro_state.locked_roll = false;
acro_state.locked_pitch = false;
break;
case CRUISE:
auto_throttle_mode = true;
cruise_state.locked_heading = false;
cruise_state.lock_timer_ms = 0;
set_target_altitude_current();
break;
case FLY_BY_WIRE_B:
auto_throttle_mode = true;
set_target_altitude_current();
break;
case CIRCLE:
// the altitude to circle at is taken from the current altitude
auto_throttle_mode = true;
next_WP_loc.alt = current_loc.alt;
break;
case AUTO:
auto_throttle_mode = true;
next_WP_loc = prev_WP_loc = current_loc;
// start or resume the mission, based on MIS_AUTORESET
mission.start_or_resume();
break;
case RTL:
auto_throttle_mode = true;
prev_WP_loc = current_loc;
do_RTL();
break;
case LOITER:
auto_throttle_mode = true;
do_loiter_at_location();
break;
case GUIDED:
auto_throttle_mode = true;
guided_throttle_passthru = false;
/*
when entering guided mode we set the target as the current
location. This matches the behaviour of the copter code
*/
guided_WP_loc = current_loc;
set_guided_WP();
break;
}
// start with throttle suppressed in auto_throttle modes
throttle_suppressed = auto_throttle_mode;
if (should_log(MASK_LOG_MODE))
DataFlash.Log_Write_Mode(control_mode);
// reset attitude integrators on mode change
rollController.reset_I();
pitchController.reset_I();
yawController.reset_I();
steerController.reset_I();
}
/*
set_mode() wrapper for MAVLink SET_MODE
*/
bool Plane::mavlink_set_mode(uint8_t mode)
{
switch (mode) {
case MANUAL:
case CIRCLE:
case STABILIZE:
case TRAINING:
case ACRO:
case FLY_BY_WIRE_A:
case AUTOTUNE:
case FLY_BY_WIRE_B:
case CRUISE:
case GUIDED:
case AUTO:
case RTL:
case LOITER:
set_mode((enum FlightMode)mode);
return true;
}
return false;
}
// exit_mode - perform any cleanup required when leaving a flight mode
void Plane::exit_mode(enum FlightMode mode)
{
// stop mission when we leave auto
if (mode == AUTO) {
if (mission.state() == AP_Mission::MISSION_RUNNING) {
mission.stop();
}
}
}
void Plane::check_long_failsafe()
{
uint32_t tnow = millis();
// only act on changes
// -------------------
if(failsafe.state != FAILSAFE_LONG && failsafe.state != FAILSAFE_GCS && flight_stage != AP_SpdHgtControl::FLIGHT_LAND_FINAL &&
flight_stage != AP_SpdHgtControl::FLIGHT_LAND_APPROACH) {
if (failsafe.state == FAILSAFE_SHORT &&
(tnow - failsafe.ch3_timer_ms) > g.long_fs_timeout*1000) {
failsafe_long_on_event(FAILSAFE_LONG);
} else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_AUTO && control_mode == AUTO &&
failsafe.last_heartbeat_ms != 0 &&
(tnow - failsafe.last_heartbeat_ms) > g.long_fs_timeout*1000) {
failsafe_long_on_event(FAILSAFE_GCS);
} else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HEARTBEAT &&
failsafe.last_heartbeat_ms != 0 &&
(tnow - failsafe.last_heartbeat_ms) > g.long_fs_timeout*1000) {
failsafe_long_on_event(FAILSAFE_GCS);
} else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_RSSI &&
gcs[0].last_radio_status_remrssi_ms != 0 &&
(tnow - gcs[0].last_radio_status_remrssi_ms) > g.long_fs_timeout*1000) {
failsafe_long_on_event(FAILSAFE_GCS);
}
} else {
// We do not change state but allow for user to change mode
if (failsafe.state == FAILSAFE_GCS &&
(tnow - failsafe.last_heartbeat_ms) < g.short_fs_timeout*1000) {
failsafe.state = FAILSAFE_NONE;
} else if (failsafe.state == FAILSAFE_LONG &&
!failsafe.ch3_failsafe) {
failsafe.state = FAILSAFE_NONE;
}
}
}
void Plane::check_short_failsafe()
{
// only act on changes
// -------------------
if(failsafe.state == FAILSAFE_NONE && (flight_stage != AP_SpdHgtControl::FLIGHT_LAND_FINAL &&
flight_stage != AP_SpdHgtControl::FLIGHT_LAND_APPROACH)) {
if(failsafe.ch3_failsafe) { // The condition is checked and the flag ch3_failsafe is set in radio.pde
failsafe_short_on_event(FAILSAFE_SHORT);
}
}
if(failsafe.state == FAILSAFE_SHORT) {
if(!failsafe.ch3_failsafe) {
failsafe_short_off_event();
}
}
}
void Plane::startup_INS_ground(void)
{
if (g.hil_mode == 1) {
while (barometer.get_last_update() == 0) {
// the barometer begins updating when we get the first
// HIL_STATE message
gcs_send_text_P(SEVERITY_LOW, PSTR("Waiting for first HIL_STATE message"));
hal.scheduler->delay(1000);
}
}
AP_InertialSensor::Start_style style;
if (g.skip_gyro_cal) {
style = AP_InertialSensor::WARM_START;
arming.set_skip_gyro_cal(true);
} else {
style = AP_InertialSensor::COLD_START;
}
if (style == AP_InertialSensor::COLD_START) {
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move plane"));
hal.scheduler->delay(100);
}
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_vehicle_class(AHRS_VEHICLE_FIXED_WING);
ahrs.set_wind_estimation(true);
ins.init(style, ins_sample_rate);
ahrs.reset();
// read Baro pressure at ground
//-----------------------------
init_barometer();
if (airspeed.enabled()) {
// initialize airspeed sensor
// --------------------------
zero_airspeed(true);
} else {
gcs_send_text_P(SEVERITY_LOW,PSTR("NO airspeed"));
}
}
// updates the status of the notify objects
// should be called at 50hz
void Plane::update_notify()
{
notify.update();
}
void Plane::resetPerfData(void)
{
mainLoop_count = 0;
G_Dt_max = 0;
G_Dt_min = 0;
perf_mon_timer = millis();
}
void Plane::check_usb_mux(void)
{
bool usb_check = hal.gpio->usb_connected();
if (usb_check == usb_connected) {
return;
}
// the user has switched to/from the telemetry port
usb_connected = usb_check;
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
// the APM2 has a MUX setup where the first serial port switches
// between USB and a TTL serial connection. When on USB we use
// SERIAL0_BAUD, but when connected as a TTL serial port we run it
// at SERIAL1_BAUD.
if (usb_connected) {
serial_manager.set_console_baud(AP_SerialManager::SerialProtocol_Console, 0);
} else {
serial_manager.set_console_baud(AP_SerialManager::SerialProtocol_MAVLink, 0);
}
#endif
}
void Plane::print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode)
{
switch (mode) {
case MANUAL:
port->print_P(PSTR("Manual"));
break;
case CIRCLE:
port->print_P(PSTR("Circle"));
break;
case STABILIZE:
port->print_P(PSTR("Stabilize"));
break;
case TRAINING:
port->print_P(PSTR("Training"));
break;
case ACRO:
port->print_P(PSTR("ACRO"));
break;
case FLY_BY_WIRE_A:
port->print_P(PSTR("FBW_A"));
break;
case AUTOTUNE:
port->print_P(PSTR("AUTOTUNE"));
break;
case FLY_BY_WIRE_B:
port->print_P(PSTR("FBW_B"));
break;
case CRUISE:
port->print_P(PSTR("CRUISE"));
break;
case AUTO:
port->print_P(PSTR("AUTO"));
break;
case RTL:
port->print_P(PSTR("RTL"));
break;
case LOITER:
port->print_P(PSTR("Loiter"));
break;
case GUIDED:
port->print_P(PSTR("Guided"));
break;
default:
port->printf_P(PSTR("Mode(%u)"), (unsigned)mode);
break;
}
}
#if CLI_ENABLED == ENABLED
void Plane::print_comma(void)
{
cliSerial->print_P(PSTR(","));
}
#endif
/*
write to a servo
*/
void Plane::servo_write(uint8_t ch, uint16_t pwm)
{
if (g.hil_mode==1 && !g.hil_servos) {
if (ch < 8) {
RC_Channel::rc_channel(ch)->radio_out = pwm;
}
return;
}
hal.rcout->enable_ch(ch);
hal.rcout->write(ch, pwm);
}
/*
should we log a message type now?
*/
bool Plane::should_log(uint32_t mask)
{
if (!(mask & g.log_bitmask) || in_mavlink_delay) {
return false;
}
bool ret = hal.util->get_soft_armed() || (g.log_bitmask & MASK_LOG_WHEN_DISARMED) != 0;
if (ret && !DataFlash.logging_started() && !in_log_download) {
// we have to set in_mavlink_delay to prevent logging while
// writing headers
in_mavlink_delay = true;
#if LOGGING_ENABLED == ENABLED
start_logging();
#endif
in_mavlink_delay = false;
}
return ret;
}
/*
send FrSky telemetry. Should be called at 5Hz by scheduler
*/
#if FRSKY_TELEM_ENABLED == ENABLED
void Plane::frsky_telemetry_send(void)
{
frsky_telemetry.send_frames((uint8_t)control_mode);
}
#endif
/*
return throttle percentage from 0 to 100
*/
uint8_t Plane::throttle_percentage(void)
{
// to get the real throttle we need to use norm_output() which
// returns a number from -1 to 1.
return constrain_int16(50*(channel_throttle->norm_output()+1), 0, 100);
}
/*
update AHRS soft arm state and log as needed
*/
void Plane::change_arm_state(void)
{
Log_Arm_Disarm();
hal.util->set_soft_armed(arming.is_armed() &&
hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED);
// log the mode, so the following log is recorded as the correct mode
if (should_log(MASK_LOG_MODE)) {
DataFlash.Log_Write_Mode(control_mode);
}
}
/*
arm motors
*/
bool Plane::arm_motors(AP_Arming::ArmingMethod method)
{
if (!arming.arm(method)) {
return false;
}
// only log if arming was successful
channel_throttle->enable_out();
change_arm_state();
return true;
}
/*
disarm motors
*/
bool Plane::disarm_motors(void)
{
if (!arming.disarm()) {
return false;
}
if (arming.arming_required() == AP_Arming::YES_ZERO_PWM) {
channel_throttle->disable_out();
}
if (control_mode != AUTO) {
// reset the mission on disarm if we are not in auto
mission.reset();
}
// suppress the throttle in auto-throttle modes
throttle_suppressed = auto_throttle_mode;
//only log if disarming was successful
change_arm_state();
return true;
}
/*
having local millis() and micros() reduces code size a bit on AVR
*/
uint32_t Plane::millis(void) const
{
return hal.scheduler->millis();
}
uint32_t Plane::micros(void) const
{
return hal.scheduler->micros();
}