-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfive_ii.tex
933 lines (843 loc) · 20.7 KB
/
five_ii.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
% see: https://groups.google.com/forum/?fromgroups#!topic/comp.text.tex/s6z9Ult_zds
\makeatletter\let\ifGm@compote\relax\makeatother
\documentclass[10pt,t]{beamer}
\usefonttheme{professionalfonts}
\usefonttheme{serif}
\PassOptionsToPackage{pdfpagemode=FullScreen}{hyperref}
\PassOptionsToPackage{usenames,dvipsnames}{color}
% \DeclareGraphicsRule{*}{mps}{*}{}
\usepackage{../linalgjh}
\usepackage{present}
\usepackage{xr}\externaldocument{../jc2} % read refs from .aux file
\usepackage{catchfilebetweentags}
\usepackage{etoolbox} % from http://tex.stackexchange.com/questions/40699/input-only-part-of-a-file-using-catchfilebetweentags-package
\makeatletter
\patchcmd{\CatchFBT@Fin@l}{\endlinechar\m@ne}{}
{}{\typeout{Unsuccessful patch!}}
\makeatother
\usepackage{polynom} % for polynomial long division
\mode<presentation>
{
\usetheme{boxes}
\setbeamercovered{invisible}
\setbeamertemplate{navigation symbols}{}
}
\addheadbox{filler}{\ } % create extra space at top of slide
\hypersetup{colorlinks=true,linkcolor=blue}
\title[Similarity] % (optional, use only with long paper titles)
{Five.II Similarity}
\author{\textit{Linear Algebra} \\ {\small Jim Hef{}feron}}
\institute{
\texttt{http://joshua.smcvt.edu/linearalgebra}
}
\date{}
\subject{Similarity}
% This is only inserted into the PDF information catalog. Can be left
% out.
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\section{Definition and Examples}
% =============================================
\begin{frame}
\vspace*{-2ex}
\ExecuteMetaData[../jc2.tex]{SimilarityMotiviation0}
\pause
\ExecuteMetaData[../jc2.tex]{SimilarityMotiviation1}
\end{frame}
% ..... Five.II.1 .....
\begin{frame}{Similar matrices}
\df[df:Similar]
\ExecuteMetaData[../jc2.tex]{df:Similar}
\ex
Consider the derivative map $\map{d/dx}{\polyspace_2}{\polyspace_2}$.
Fix the basis $B=\sequence{1,x,x^2}$
and the basis $D=\sequence{1,1+x,1+x+x^2}$.
In this arrow diagram we will first get $T$, and then calculate $\hat{T}$
from it.
\begin{equation*}
\begin{CD}
V_{\wrt{B}} @>t>T> V_{\wrt{B}} \\
@V{\scriptstyle\identity} VV @V{\scriptstyle\identity} VV \\
V_{\wrt{D}} @>t>\hat{T}> V_{\wrt{D}}
\end{CD}
\end{equation*}
\pause
The action of $d/dx$ on the
elements of the basis $B$ is $1\mapsto 0$, $x\mapsto 1$, and $x^2\mapsto 2x$.
\begin{equation*}
\rep{\frac{d}{dx}(1)}{B}=\colvec{0 \\ 0 \\ 0}
\hspace{0.8em}
\rep{\frac{d}{dx}(x)}{B}=\colvec{1 \\ 0 \\ 0}
\hspace{0.8em}
\rep{\frac{d}{dx}(x^2)}{B}=\colvec{0 \\ 2 \\ 0}
\end{equation*}
\end{frame}
\begin{frame}
So we have this matrix representation of the map.
\begin{equation*}
T=\rep{\frac{d}{dx}}{B,B}=
\begin{mat}
0 &1 &0 \\
0 &0 &2 \\
0 &0 &0
\end{mat}
\end{equation*}
\pause
The matrix changing bases from $B$ to $D$ is $\rep{\identity}{B,D}$.
We find these by eye
\begin{equation*}
\rep{\identity(1)}{D}=\colvec{1 \\ 0 \\ 0}
\quad
\rep{\identity(x)}{D}=\colvec{-1 \\ 1 \\ 0}
\quad
\rep{\identity(x^2)}{D}=\colvec{0 \\ -1 \\ 1}
\end{equation*}
to get this.
\begin{equation*}
P=
\begin{mat}
1 &-1 &0 \\
0 &1 &-1 \\
0 &0 &1
\end{mat}
\qquad
P^{-1}=
\begin{mat}
1 &1 &1 \\
0 &1 &1 \\
0 &0 &1
\end{mat}
\end{equation*}
Now, by following the arrow diagram we have $\hat{T}=PTP^{-1}$.
\begin{equation*}
\hat{T}=
\begin{mat}
0 &1 &-1 \\
0 &0 &2 \\
0 &0 &0
\end{mat}
\end{equation*}
\end{frame}
\begin{frame}
To check that, and to underline what the arrow diagram says
\begin{equation*}
\begin{CD}
V_{\wrt{B}} @>t>T> V_{\wrt{B}} \\
@V{\scriptstyle\identity} VV @V{\scriptstyle\identity} VV \\
V_{\wrt{D}} @>t>\hat{T}> V_{\wrt{D}}
\end{CD}
\end{equation*}
we calculate $\hat{T}$ directly.
The effect of the map on the basis elements is
$d/dx(1)=0$, $d/dx(1+x)=1$, and $d/dx(1+x+x^2)=1+2x$.
Representing of those with respect to $D$
\begin{equation*}
\rep{0}{D}=\colvec{0 \\ 0 \\ 0}
\quad
\rep{1}{D}=\colvec{1 \\ 0 \\ 0}
\quad
\rep{1+2x}{D}=\colvec{-1 \\ 2 \\ 0}
\end{equation*}
gives the same matrix $\hat{T}=\rep{d/dx}{D,D}$ as above.
\end{frame}
\begin{frame}
The definition doesn't require that we consider the underlying maps.
We can just multiply matrices.
\ex
Where
\begin{equation*}
T=
\begin{mat}
0 &-1 &-2 \\
2 &3 &2 \\
4 &5 &2
\end{mat}
\qquad
P=
\begin{mat}
1 &1 &0 \\
-1 &1 &0 \\
0 &0 &3
\end{mat}
\end{equation*}
(note that $P$ is nonsingular) we can compute this $\hat{T}=PTP^{-1}$.
\begin{equation*}
\hat{T}=
\begin{mat}
2 &0 &0 \\
3 &1 &4/3 \\
27/2 &3/2 &2
\end{mat}
\end{equation*}
\pause
\ex[ex:OnlyZeroSimToZero]
\ExecuteMetaData[../jc2.tex]{ex:OnlyZeroSimToZero}
\end{frame}
\begin{frame}{Similarity is an equivalence}
\nearbyexercise{exer:SimIsEquivRel} checks that
similarity is an equivalence relation.
\pause
Since matrix similarity is a special case of matrix equivalence,
if two matrices are similar then they are matrix equivalent.
What about the converse:~must any two matrix equivalent square matrices be
similar?
No; the matrix equivalence class
of an identity consists of all nonsingular matrices of that size while the
prior example shows that an identity matrix is alone in its similarity
class.
\pause
So some matrix equivalence classes
split into two or more similarity classes\Dash similarity gives a finer
partition than does equivalence.
This pictures some matrix equivalence classes subdivided into
similarity classes.
\centergraphic{../ch5.4}
\pause
We naturally want a canonical form to represent the similarity classes.
Some classes, but not all,
are represented by a diagonal form.
\end{frame}
% ..... Five.II.2 .....
\section{Diagonalizability}
\begin{frame}
\df[df:Diagonalizable]
\ExecuteMetaData[../jc2.tex]{df:Diagonalizable}
\ex
This matrix
\begin{equation*}
\begin{mat}
6 &-1 &-1 \\
2 &11 &-1 \\
-6 &-5 &7
\end{mat}
\end{equation*}
is diagonalizable by using this
\begin{equation*}
P=
\begin{mat}
1/2 &1/4 &1/4 \\
-1/2 &1/4 &1/4 \\
-1/2 &-3/4 &1/4
\end{mat}
\quad
P^{-1}=
\begin{mat}
1 &-1 &0 \\
0 &1 &-1 \\
2 &1 &1
\end{mat}
\end{equation*}
to get this $D=PSP^{-1}$.
\begin{equation*}
D=
\begin{mat}
4 &0 &0 \\
0 &8 &0 \\
0 &0 &12
\end{mat}
\end{equation*}
\end{frame}
\begin{frame}
\ex
\ExecuteMetaData[../jc2.tex]{ex:NotDiagonalizable}
\end{frame}
\begin{frame}
\lm[lm:DiagIffBasisOfEigens]
\ExecuteMetaData[../jc2.tex]{lm:DiagIffBasisOfEigens}
\pause
\pf
\ExecuteMetaData[../jc2.tex]{pf:DiagIffBasisOfEigens}
\qed
\end{frame}
\begin{frame}
\ex
This matrix is not diagonal
\begin{equation*}
T=
\begin{mat}
4 &1 \\
0 &-1
\end{mat}
\end{equation*}
but we can
find a diagonal matrix similar to it, by finding an appropriate basis.
\pause
Suppose that $T=\rep{t}{\stdbasis_2,\stdbasis_2}$ for $\map{t}{\Re^2}{\Re^2}$.
We will find a basis $B=\sequence{\vec{\beta}_1,\vec{\beta}_2}$ giving a
diagonal representation.
\begin{equation*}
D=\rep{t}{B,B}=
\begin{mat}
\lambda_1 &0 \\
0 &\lambda_2
\end{mat}
\end{equation*}
Here is the arrow diagram.
\begin{equation*}
\begin{CD}
V_{\wrt{\stdbasis_2}} @>t>T> V_{\wrt{\stdbasis_2}} \\
@V{\scriptstyle\identity} VV @V{\scriptstyle\identity} VV \\
V_{\wrt{B}} @>t>D> V_{\wrt{B}}
\end{CD}
\end{equation*}
\end{frame}
\begin{frame}
We want $\lambda_1$ and $\lambda_2$ making these true.
\begin{equation*}
\begin{mat}
4 &1 \\
0 &-1
\end{mat}
\vec{\beta}_1
=\lambda_1\cdot\vec{\beta}_1
\qquad
\begin{mat}
4 &1 \\
0 &-1
\end{mat}
\vec{\beta}_2
=\lambda_2\cdot\vec{\beta}_2
\end{equation*}
More precisely,
we want all scalars $x\in\C$ such that this system
\begin{equation*}
\begin{mat}
4 &1 \\
0 &-1
\end{mat}
\colvec{b_1 \\ b_2}
=x\cdot\colvec{b_1 \\ b_2}
\end{equation*}
has solutions $b_1,b_2\in\C$ that are not both zero
(the zero vector is not an element of any basis).
% \end{frame}
% \begin{frame}
\pause
Rewrite that as a linear system.
\begin{equation*}
\begin{linsys}{2}
(4-x)\cdot b_1 &+ &b_2 &= &0 \\
& &(-1-x)\cdot b_2 &= &0
\end{linsys}
% \tag{$*$}
\end{equation*}
One solution is $\lambda_1=-1$, associated with those
$(b_1,b_2)$ such that $b_1=(-1/5)b_2$.
The other solution is $\lambda_2=4$, associated with the
$(b_1,b_2)$ such that
$b_2=0$.
\end{frame}
\begin{frame}
Thus the original matrix
\begin{equation*}
T=
\begin{mat}[r]
4 &1 \\
0 &-1
\end{mat}
\end{equation*}
is diagonalizable to
\begin{equation*}
D=
\begin{mat}[r]
-1 &0 \\
0 &4
\end{mat}
\end{equation*}
where this is a basis.
\begin{equation*}
B=\sequence{\colvec[r]{-1 \\ 5},
\colvec{1 \\ 0}}
\end{equation*}
\end{frame}
% ..... Five.II.3 .....
\section{Eigenvalues and Eigenvectors}
\begin{frame}{Eigenvalues and eigenvectors}
\df[def:Eigen]
\ExecuteMetaData[../jc2.tex]{df:Eigen}
\pause
\df[df:EigenOfMatrix]
\ExecuteMetaData[../jc2.tex]{df:EigenOfMatrix}
\ex
The matrix
\begin{equation*}
D=
\begin{mat}
4 &0 \\
0 &2
\end{mat}
\end{equation*}
has an eigenvalue $\lambda_1=4$ and a second eigenvalue $\lambda_2=2$.
The first is true because an associated eigenvector is
$\vec{e_1}$
\begin{equation*}
\begin{mat}
4 &0 \\
0 &2
\end{mat}
\colvec{1 \\ 0}
=
4\cdot\colvec{1 \\ 0}
\end{equation*}
and similarly for the second an associated eigenvector
is $e_2$.
\begin{equation*}
\begin{mat}
4 &0 \\
0 &2
\end{mat}
\colvec{0 \\ 1}
=
2\cdot\colvec{0 \\ 1}
\end{equation*}
\end{frame}
\begin{frame}
Thinking of the matrix as representing a transformation of the plane,
the transformation acts on those vectors in a particularly simple way,
by rescaling.
Not every vector is simply rescaled.
\begin{equation*}
\begin{mat}
4 &0 \\
0 &2
\end{mat}
\colvec{1 \\ 1}
=\colvec{4 \\ 2}
\neq
x\cdot\colvec{1 \\ 1}
\end{equation*}
\end{frame}
\begin{frame}{Computing eigenvalues and eigenvectors}
\ex
We will find the eigenvalues and associated eigenvectors of this matrix.
\begin{equation*}
T=
\begin{mat}
0 &5 &7 \\
-2 &7 &7 \\
-1 &1 &4
\end{mat}
\end{equation*}
We want to find scalars~$x$ such that $T\vec{\zeta}=x\vec{\zeta}$ for
some nonzero $\vec{\zeta}$.
Bring the terms to the left side.
\begin{equation*}
\begin{mat}
0 &5 &7 \\
-2 &7 &7 \\
-1 &1 &4
\end{mat}
\colvec{z_1 \\ z_2 \\ z_3}
-x\colvec{z_1 \\ z_2 \\ z_3}
=\colvec{0 \\ 0 \\ 0}
\end{equation*}
and factor.
\begin{equation*}
\begin{mat}
0-x &5 &7 \\
-2 &7-x &7 \\
-1 &1 &4-x
\end{mat}
\colvec{z_1 \\ z_2 \\ z_3}
=
\colvec{0 \\ 0 \\ 0}
\tag{$*$}
\end{equation*}
This homogeneous system has nonzero solutions if and only if the
matrix is singular, that is, has a determinant of zero.
\end{frame}
\begin{frame}
Some computation gives the determinant and its factors.
\begin{align*}
0&=
\begin{vmat}
0-x &5 &7 \\
-2 &7-x &7 \\
-1 &1 &4-x
\end{vmat} \\
&=
x^3 - 11x^2 + 38x - 40
=(x - 5)(x - 4)(x - 2)
\end{align*}
So the eigenvalues are $\lambda_1=5$, $\lambda_2=4$, and $\lambda_3=2$.
\pause
To find the eigenvectors associated with the eigenvalue of $5$
specialize equation~($*$) for $x=5$.
\begin{equation*}
\begin{mat}
-5 &5 &7 \\
-2 &2 &7 \\
-1 &1 &-1
\end{mat}
\colvec{z_1 \\ z_2 \\ z_3}
=
\colvec{0 \\ 0 \\ 0}
\end{equation*}
Gauss's Method gives this solution set; its nonzero elements are the
eigenvectors.
\begin{equation*}
V_5=\set{\colvec{1 \\ 1 \\ 0}z_2\suchthat z_2\in\C}
\end{equation*}
\end{frame}
\begin{frame}
Similarly, to find the eigenvectors associated with the eigenvalue of~$4$
specialize equation~($*$) for $x=4$.
\begin{equation*}
\begin{mat}
-4 &5 &7 \\
-2 &3 &7 \\
-1 &1 &0
\end{mat}
\colvec{z_1 \\ z_2 \\ z_3}
=
\colvec{0 \\ 0 \\ 0}
\end{equation*}
Gauss's Method gives this.
\begin{equation*}
V_4=\set{\colvec{-7 \\ -7 \\ 1}z_3\suchthat z_3\in\C}
\end{equation*}
\pause
Specializing~($*$) for~$x=2$
\begin{equation*}
\begin{mat}
-2 &5 &7 \\
-2 &5 &7 \\
-1 &1 &2
\end{mat}
\colvec{z_1 \\ z_2 \\ z_3}
=
\colvec{0 \\ 0 \\ 0}
\end{equation*}
gives this.
\begin{equation*}
V_2=\set{\colvec{1 \\ -1 \\ 1}z_3\suchthat z_3\in\C}
\end{equation*}
\end{frame}
% --
\begin{frame}
\ex
To find the eigenvalues and associated eigenvectors for the matrix
\begin{equation*}
T=
\begin{mat}
3 &1 \\
1 &3
\end{mat}
\end{equation*}
start with this equation.
\begin{equation*}
\begin{mat}
3 &1 \\
1 &3
\end{mat}
\colvec{b_1 \\ b_2}
=x\colvec{b_1 \\ b_2}
\quad\Longrightarrow\quad
\begin{mat}
3-x &1 \\
1 &3-x
\end{mat}
\colvec{b_1 \\ b_2}
=\colvec{0 \\ 0}
\tag{$*$}
\end{equation*}
\pause
That system
has a nontrivial solution if this determinant is nonzero.
\begin{equation*}
\begin{vmat}
3-x &1 \\
1 &3-x
\end{vmat}
=x^2-6x+8
=(x-2)(x-4)
\end{equation*}
\pause
First take the $x=2$ version of~($*$).
\begin{equation*}
\begin{linsys}{2}
1\cdot b_1 &+ &b_2 &= &0 \\
b_1 &+ &1\cdot b_2 &= &0
\end{linsys}
\quad\Longrightarrow\quad
V_2=\set{\colvec{b_1 \\ b_2}\suchthat \text{$b_1=-b_2$ where $b_2\in\C$}}
\end{equation*}
Solving the second system is just as easy.
\begin{equation*}
\begin{linsys}{2}
-1\cdot b_1 &+ &b_2 &= &0 \\
b_1 &- &1\cdot b_2 &= &0
\end{linsys}
\quad\Longrightarrow\quad
V_4=\set{\colvec{b_1 \\ b_2}\suchthat \text{$b_1=b_2$ where $b_2\in\C$}}
\end{equation*}
\end{frame}
\begin{frame}
\ex
If the matrix is upper diagonal or lower diagonal
\begin{equation*}
T=
\begin{mat}
2 &1 &0 \\
0 &3 &1 \\
0 &0 &2
\end{mat}
\end{equation*}
then the polynomial is easy to factor.
\begin{equation*}
0=
\begin{vmat}
2-x &1 &0 \\
0 &3-x &1 \\
0 &0 &2-x
\end{vmat}
=(3-x)(2-x)^2
\end{equation*}
\pause
These are the solutions for $\lambda_1=3$.
\begin{equation*}
\begin{mat}
-1 &1 &0 \\
0 &0 &1 \\
0 &0 &-1
\end{mat}
\colvec{z_1 \\ z_2 \\ z_3}
=
\colvec{0 \\ 0 \\ 0}
\quad\Longrightarrow\quad
V_3=\set{\colvec{1 \\ 1 \\ 0}z_2\suchthat z_2\in\C}
\end{equation*}
These are for $\lambda_2=2$.
\begin{equation*}
\begin{mat}
0 &1 &0 \\
0 &1 &1 \\
0 &0 &0
\end{mat}
\colvec{z_1 \\ z_2 \\ z_3}
=
\colvec{0 \\ 0 \\ 0}
\quad\Longrightarrow\quad
V_2=\set{\colvec{1 \\ 0 \\ 0}z_1\suchthat z_1\in\C}
\end{equation*}
\end{frame}
\begin{frame}
Matrices that are similar have the same eigenvalues, but
needn't have the same eigenvectors.
\ex
These two are similar
\begin{equation*}
T=
\begin{mat}
4 &0 &0 \\
0 &8 &0 \\
0 &0 &12
\end{mat}
\qquad
S=
\begin{mat}[r]
6 &-1 &-1 \\
2 &11 &-1 \\
-6 &-5 &7
\end{mat}
\end{equation*}
since $S=PTP^{-1}$ for this $P$.
\begin{equation*}
P=
\begin{mat}[r]
1 &-1 &0 \\
0 &1 &-1 \\
2 &1 &1
\end{mat}
\qquad
P^{-1}=
\begin{mat}[r]
1/2 &1/4 &1/4 \\
-1/2 &1/4 &1/4 \\
-1/2 &-3/4 &1/4
\end{mat}
\end{equation*}
For the first matrix
\begin{equation*}
\colvec{1 \\ 0 \\ 0}
\end{equation*}
is an eigenvector associated with the eigenvalue~$4$ but
that does not hold for the second matrix.
\end{frame}
% \begin{frame}
% \noindent Suppose that $\map{t}{\C^3}{\C^3}$ is
% represented by $T$ with respect to the standard basis.
% Then this is the action of $t$.
% \begin{equation*}
% \colvec{x \\ y \\ z}\mapsunder{t}\colvec{4x \\ 8y \\ 12z}
% \end{equation*}
% \pause
% By eye we see that three
% eigenvalues of~$t$ are $\lambda_1=4$, $\lambda_2=8$, and~$\lambda_3=12$.
% For instance this holds.
% \begin{equation*}
% T\cdot\colvec{1 \\ 0 \\ 0}
% =\begin{mat}
% 4 &0 &0 \\
% 0 &8 &0 \\
% 0 &0 &12
% \end{mat}\colvec{1 \\ 0 \\ 0}
% =4\cdot\colvec{1 \\ 0 \\ 0}
% \end{equation*}
% \end{frame}
% \begin{frame}
% Contrast that with $S=PTP^{-1}$, which represents the same function, but
% with respect to a different basis.
% \begin{equation*}
% \begin{CD}
% V_{\wrt{\stdbasis_3}} @>t>T> V_{\wrt{\stdbasis_3}} \\
% @V{\scriptstyle\identity} VV @V{\scriptstyle\identity} VV \\
% V_{\wrt{B}} @>t>S> V_{\wrt{B}}
% \end{CD}
% \end{equation*}
% We can easily find the basis~$B$.
% Since $P^{-1}=\rep{\identity}{B,\stdbasis_3}$, its first column is
% $\rep{\identity(\vec{\beta}_1)}{\stdbasis_3}=\rep{\vec{\beta}_1}{\stdbasis_3}$.
% With respect to the standard basis any vector is represented by itself
% so the first basis element $\vec{\beta}_1$ is the first column of $P^{-1}$.
% The same goes for the other two columns.
% \begin{equation*}
% B=\sequence{\colvec[r]{1/2 \\ -1/2 \\ -1/2},
% \colvec[r]{1/4 \\ 1/4 \\ -3/4},
% \colvec[r]{1/4 \\ 1/4 \\ 1/4}}
% \end{equation*}
% \end{frame}
% \begin{frame}
% % We know that the transformation~$t$ has eigenvalues of $4$, $8$, and~$12$.
% % For instance $t(\vec{e}_1)=4\vec{e}_1$.
% Now, since each represents the transformation~$t$, the matrices~$T$ and $S$
% reflect the same action $\vec{e}_1\mapsto4\vec{e}_1$.
% \begin{align*}
% &\rep{t}{\stdbasis_3,\stdbasis_3}\cdot\rep{\vec{e}_1}{\stdbasis_3}
% =T\cdot\rep{\vec{e}_1}{\stdbasis_3}
% =4\cdot\rep{\vec{e}_1}{\stdbasis_3} \\
% &\rep{t}{B,B}\cdot\rep{\vec{e}_1}{B}
% =S\cdot\rep{\vec{e}_1}{B}
% =4\cdot\rep{\vec{e}_1}{B}
% \end{align*}
% But, while in the two equations the $4$'s are the same, the vectors
% representations are not.
% \begin{align*}
% T\cdot\rep{\vec{e}_1}{\stdbasis_3}
% =T\colvec{1 \\ 0 \\ 0}
% &=4\cdot\colvec{1 \\ 0 \\ 0} \\
% S\cdot\rep{\vec{e}_1}{B}
% =S\cdot\colvec{1 \\ 0 \\ 2}
% &=4\cdot\colvec{1 \\ 0 \\ 2}
% \end{align*}
% So the two matrices have the same eigenvalues but different eigenvectors.
% \end{frame}
\begin{frame}{Characteristic polynomial}
\df[df:CharacteristicPoly]
\ExecuteMetaData[../jc2.tex]{df:CharacteristicPoly}
\no
\ExecuteMetaData[../jc2.tex]{df:CharacteristicPolyExer}
\pause
\lm[le:MapNonTrivSpHasEigen]
\ExecuteMetaData[../jc2.tex]{lm:MapNonTrivSpHasEigen}
\pause
\pf
\ExecuteMetaData[../jc2.tex]{pf:MapNonTrivSpHasEigen}
\qed
\pause
\re
This result is why we switched in this chapter
from working with real number scalars
to complex number scalars.
\end{frame}
\begin{frame}{Eigenspace}
\df[df:Eigenspace]
\ExecuteMetaData[../jc2.tex]{df:Eigenspace}
\ex
Recall that this matrix has three eigenvalues, $5$, $4$, and~$2$.
\begin{equation*}
T=
\begin{mat}[r]
0 &5 &7 \\
-2 &7 &7 \\
-1 &1 &4
\end{mat}
\end{equation*}
Earlier, we found that these are the eigenspaces.
\begin{equation*}
V_5=\set{\colvec[r]{1 \\ 1 \\ 0}c\suchthat c\in\C}
\quad
V_4=\set{\colvec[r]{-7 \\ -7 \\ 1}c\suchthat c\in\C}
\quad
V_2=\set{\colvec[r]{1 \\ -1 \\ 1}c\suchthat c\in\C}
\end{equation*}
\end{frame}
\begin{frame}
\lm[le:EigSpaceIsSubSp]
\ExecuteMetaData[../jc2.tex]{lm:EigSpaceIsSubSp}
\pause
\pf
\ExecuteMetaData[../jc2.tex]{pf:EigSpaceIsSubSp}
\qed
\end{frame}
\begin{frame}
\th[th:DistEValueGivesLIEvecs]
\ExecuteMetaData[../jc2.tex]{th:DistEValueGivesLIEvecs}
\pause
\pf
\ExecuteMetaData[../jc2.tex]{pf:DistEValueGivesLIEvecs0}
\end{frame}
\begin{frame}
\ExecuteMetaData[../jc2.tex]{pf:DistEValueGivesLIEvecs1}
\qed
\end{frame}
\begin{frame}
\ex
This matrix from above has three eigenvalues, $5$, $4$, and~$2$.
\begin{equation*}
T=
\begin{mat}
0 &5 &7 \\
-2 &7 &7 \\
-1 &1 &4
\end{mat}
\end{equation*}
Picking a nonzero vector from each eigenspace we get this linearly independent
set (which is a basis because it has three elements).
\begin{equation*}
\set{\colvec{1 \\ 1 \\ 0},
\colvec{-14 \\ -14 \\ 2},
\colvec{-1/2 \\ 1/2 \\ -1/2}}
\end{equation*}
\pause
\ex
This upper-triangular matrix has the eigenvalues $2$ and~$3$
\begin{equation*}
\begin{mat}
2 &1 &0 \\
0 &3 &1 \\
0 &0 &2
\end{mat}
\end{equation*}
Picking a vector from each of $V_3$ and~$V_2$ gives this linearly independent set.
\begin{equation*}
\set{\colvec{1 \\ 1 \\ 0},
\colvec{2 \\ 0 \\ 0}}
\end{equation*}
\end{frame}
\begin{frame}{A criteria for diagonalizability}
\co[co:DistinctEivenvaluesImpliesDiagonal]
\ExecuteMetaData[../jc2.tex]{co:DistinctEivenvaluesImpliesDiagonal}
\pf
\ExecuteMetaData[../jc2.tex]{pf:DistinctEivenvaluesImpliesDiagonal}
\qed
\end{frame}
%...........................
% \begin{frame}g
% \ExecuteMetaData[../gr3.tex]{GaussJordanReduction}
% \df[def:RedEchForm]
%
% \end{frame}
\end{document}