-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfour_i.tex
1618 lines (1474 loc) · 35.9 KB
/
four_i.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% see: https://groups.google.com/forum/?fromgroups#!topic/comp.text.tex/s6z9Ult_zds
\makeatletter\let\ifGm@compote\relax\makeatother
\documentclass[10pt,t]{beamer}
\usefonttheme{professionalfonts}
\usefonttheme{serif}
\PassOptionsToPackage{pdfpagemode=FullScreen}{hyperref}
\PassOptionsToPackage{usenames,dvipsnames}{color}
% \DeclareGraphicsRule{*}{mps}{*}{}
\usepackage{../linalgjh}
\usepackage{present}
\usepackage{xr}\externaldocument{../det1} % read refs from .aux file
\usepackage{xr}\externaldocument{../map4} % read refs from .aux file
\usepackage{catchfilebetweentags}
\usepackage{etoolbox} % from http://tex.stackexchange.com/questions/40699/input-only-part-of-a-file-using-catchfilebetweentags-package
\makeatletter
\patchcmd{\CatchFBT@Fin@l}{\endlinechar\m@ne}{}
{}{\typeout{Unsuccessful patch!}}
\makeatother
\mode<presentation>
{
\usetheme{boxes}
\setbeamercovered{invisible}
\setbeamertemplate{navigation symbols}{}
}
\addheadbox{filler}{\ } % create extra space at top of slide
\hypersetup{colorlinks=true,linkcolor=blue}
\title[Determinants] % (optional, use only with long paper titles)
{Four.I Definition of Determinant}
\author{\textit{Linear Algebra} \\ {\small Jim Hef{}feron}}
\institute{
\texttt{http://joshua.smcvt.edu/linearalgebra}
}
\date{}
\subject{Determinants}
% This is only inserted into the PDF information catalog. Can be left
% out.
\begin{document}
\begin{frame}
\titlepage
\end{frame}
% =============================================
% \begin{frame}{Reduced Echelon Form}
% \end{frame}
% ..... Four.I.1,2 .....
\section{Properties of Determinants}
%..........
\begin{frame}{Nonsingular matrices}
\noindent An \( \nbyn{n} \) matrix \( T \) is nonsingular if and only if
each of these holds:%
\ExecuteMetaData[../det1.tex]{EquivalentOfNonsingular}
This chapter develops a formula to determine whether a
matrix is nonsingular.
\end{frame}
\begin{frame}
\ExecuteMetaData[../det1.tex]{DeterminantIntro}
\end{frame}
\begin{frame}{Remark: how we will proceed}
The prior slide gives a formula for the $\nbyn{1}$, $\nbyn{2}$, and~$\nbyn{3}$
determinants.
We can give a formula for the general $\nbyn{n}$~case,
the permutation expansion.
However, this formula has a number of disadvantages, including
its complexity and that
it is too slow for practical computations.
Instead, we will define a
determinant function as one that satisfies some conditions.
These conditions let us compute the determinant via Gauss's Method,
which we know to be fast and easy.
(The conditions extrapolate from the $\nbyn{1}$, $\nbyn{2}$,
and~$\nbyn{3}$ cases; see the discussion in the book.)
Defining a function by giving a list of conditions it must satisfy is
common in more advanced courses.
But it has the downside that we must
show that there is one and only one function satisfying those conditions.
We will first give an algorithm that, following the conditions, goes from
any square matrix input to a real number output.
Later we will develop the formula for the determinant, which will
show that the determinant is well-defined (that is,
for any input there is exactly one associated output).
\end{frame}
\begin{frame}{Definition of determinant}
\df[def:Det]
\ExecuteMetaData[../det1.tex]{df:Det}
\pause
\re[rem:SwapRowsRedun] % \hspace*{-1em}
\ExecuteMetaData[../det1.tex]{re:SwapRowsRedun}
\end{frame}
\begin{frame}{Consequences of the definition}
\lm[le:IdenRowsDetZero]
\ExecuteMetaData[../det1.tex]{lm:IdenRowsDetZero}
\pause
\pf
\ExecuteMetaData[../det1.tex]{pf:IdenRowsDetZero0}
\pause
\ExecuteMetaData[../det1.tex]{pf:IdenRowsDetZero1}
\end{frame}
\begin{frame}
\ExecuteMetaData[../det1.tex]{pf:IdenRowsDetZero2}
\pause
\ExecuteMetaData[../det1.tex]{pf:IdenRowsDetZero3}
\end{frame}
\begin{frame}
\ExecuteMetaData[../det1.tex]{pf:IdenRowsDetZero4}
\qed
\end{frame}
\begin{frame}
% (As remarked above, it is not evident from the definition that there is
% a function satisfying the conditions, or that there is only one such function.
% We will show later that the determinant exists and is unique.
% For the moment we proceed without that assurance.)
% \pause
The conditions allow us to
compute the determinant of a matrix using Gauss's Method
\ex On this matrix we can perform the Gauss's Method steps of
$-2\rho_1+\rho_2$ and $-3\rho_1+\rho_3$, followed by
$-(5/3)\rho_2+\rho_3$.
Condition~(1) says that these row combination operations
leave the determinant unchanged.
\begin{equation*}
\begin{vmat}
1 &3 &-2 \\
2 &0 &4 \\
3 &-1 &5
\end{vmat}
=
\begin{vmat}
1 &3 &-2 \\
0 &-6 &-8 \\
0 &-10 &-11
\end{vmat}
=
\begin{vmat}
1 &3 &-2 \\
0 &-6 &-8 \\
0 &0 &-7/3
\end{vmat}
\end{equation*}
\pause
The determinant is the product down the
diagonal:
$1\cdot(-6)\cdot(-7/3)=14$.
\end{frame}
\begin{frame}
\ex
To see what happens with a row swap,
consider this matrix.
The swap changes the determinant's sign.
\begin{equation*}
\begin{vmat}
0 &3 &1 \\
1 &2 &0 \\
1 &5 &2
\end{vmat}
=
-\begin{vmat}
1 &2 &0 \\
0 &3 &1 \\
1 &5 &2
\end{vmat}
\end{equation*}
Finish by performing $-\rho_1+\rho_3$
followed by $-\rho_2+\rho_3$
\begin{equation*}
=-\begin{vmat}
1 &2 &0 \\
0 &3 &1 \\
0 &3 &2
\end{vmat}
=-\begin{vmat}
1 &2 &0 \\
0 &3 &1 \\
0 &0 &1
\end{vmat}
\end{equation*}
and then multiplying down the diagonal.
The determinant of the original matrix is $-3$.
\end{frame}
\begin{frame}
\ex
Finally, to illustrate condition~(3) contrast these two.
\begin{equation*}
\begin{vmat}
5 &10 \\
3 &4
\end{vmat}
\qquad
\begin{vmat}
1 &2 \\
3 &4
\end{vmat}
\end{equation*}
Condition~(3) gives
\begin{equation*}
\begin{vmat}
5 &10 \\
3 &4
\end{vmat}
=5\cdot
\begin{vmat}
1 &2 \\
3 &4
\end{vmat}
\end{equation*}
and by performing $-3\rho_1+\rho_2$
and multiplying down the diagonal we get this.
\begin{equation*}
=5\cdot
\begin{vmat}
1 &2 \\
3 &4
\end{vmat}
=5\cdot
\begin{vmat}
1 &2 \\
0 &-2
\end{vmat}
=5\cdot(-2)
=-10
\end{equation*}
Thus here is the contrast.
\begin{equation*}
\begin{vmat}
5 &10 \\
3 &4
\end{vmat}
=-10
\qquad
\begin{vmat}
1 &2 \\
3 &4
\end{vmat}
=-2
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Warning}
The formula for the determinant of a $\nbyn{2}$ matrix has something to
do with multiplying diagonals.
\begin{equation*}
\begin{vmat}
a &b \\
c &d
\end{vmat}
=ad-bc
\end{equation*}
Sometimes people have learned a mnemonic for the $\nbyn{3}$ formula
that has to do with multplying diagonals.
\begin{equation*}
\begin{vmat}
a &b &c \\
d &e &f \\
g &h &i
\end{vmat}
=aei+bfg+cdh
-gec-hfa-idb
\qquad
\begin{pmat}{ccc|cc}
a &b &c &a &b \\
d &e &f &d &e \\
g &h &i &g &h
\end{pmat}
\end{equation*}
Don't try to extend to $\nbyn{4}$ or larger sizes.
For those cases instead use Gauss's Method.
\end{frame}
\begin{frame}{The determinant is unique}
Recall our definition, that a function is a determinant if
it satisfies four conditions.
This approach does not make evident that
such function is unique.
(An analogy: imagine defining a function
$\map{f}{\N}{\N}$ to be an `even-maker' under the condition that its
output is an even constant.
There is such a function, but also there is more than one.)
We now handle that issue; later we will handle the issue of showing that such
a function exists at all.
\pause
\lm[lm:DetFcnIsUnique]
\ExecuteMetaData[../det1.tex]{lm:DetFcnIsUnique}
\pause
\pf
\ExecuteMetaData[../det1.tex]{pf:DetFcnIsUnique}
\qed
% \medskip
% So if there is a function mapping $\matspace_{\nbyn{n}}$ to $\Re$ that
% satisfies the four conditions of the definition then there is only one such
% function.
\end{frame}
\begin{frame}{More process discussion}
We are left with the possibility that such a function does not exist.
How could there fail to be such a function, when we have been using
Gauss's Method to compute its outputs?
\ExecuteMetaData[../det1.tex]{DifferentGaussMethodReductions}
That we get consistent results in this one case
does not ensure that all determinant computations using Gauss's Method
give well-defined values.
\end{frame}
\begin{frame}
In particular, recall that the definition's condition~(2),
that row swaps change the sign of the determinant, is
redundant.
Imagine that we did not notice the need for a sign change and had mistakenly
proposed a definition where row swaps leave the determinant unchanged.
Then the prior slide's pair of $\nbyn{2}$ calculations would yield the
conflicting output values of $-2$ and~$2$.
We must prove that our definition does not lead to
such a thing,
\pause
The rest of this section gives an alternative way to compute
the determinant, a formula.
This formula does not involve Gauss's Method and
makes plain that the determinant is a function,
that it returns well-defined outputs.
As mentioned earlier, computing a determinant with this formula
is less practical than using the algorithm of Gauss's Method since it
is slow.
But it nonetheless is invaluable for the theory.
\end{frame}
% ..... Four.I.3 .....
\section{The Permutation Expansion}
\begin{frame}{The determinant function is not linear}
\ex
The determinant does not in general satisfy that
$\det(k\cdot T)=k\cdot\det(T)$.
The second matrix here is twice the first
but the determinant does not double.
\begin{equation*}
\begin{vmat}
3 &-3 &9 \\
1 &-1 &7 \\
2 &4 &0
\end{vmat}
=-72
\qquad
\begin{vmat}
6 &-6 &18 \\
2 &-2 &14 \\
4 &8 &0
\end{vmat}
=-576
\end{equation*}
Condition~(3) % of \nearbydefinition{def:Det}%
has the determinant scale one row at a time.
\begin{align*}
\begin{vmat}
6 &-6 &18 \\
2 &-2 &14 \\
4 &8 &0
\end{vmat}
&=2\cdot
\begin{vmat}
3 &-3 &9 \\
2 &-2 &14 \\
4 &8 &0
\end{vmat} \\
&=4\cdot
\begin{vmat}
3 &-3 &9 \\
1 &-1 &7 \\
4 &8 &0
\end{vmat} \\
&=8\cdot
\begin{vmat}
3 &-3 &9 \\
1 &-1 &7 \\
2 &4 &0
\end{vmat}
\end{align*}
\end{frame}
\begin{frame}
So determinants are not linear:~with scalar multiplication,
the scalars come out one row at a time.
What happens with addition?
Consider condition~(3) applied to the case
% \begin{equation*}
% \det (\vec{\rho}_1,\dots,k\vec{\rho}_i,\dots,\vec{\rho}_n)
% = k\cdot \det (\vec{\rho}_1,\dots,\vec{\rho}_i,\dots,\vec{\rho}_n)
% \end{equation*}
$k=2$.
\begin{equation*}
\det (\vec{\rho}_1,\dots,2\vec{\rho}_i,\dots,\vec{\rho}_n)
= 2\cdot \det (\vec{\rho}_1,\dots,\vec{\rho}_i,\dots,\vec{\rho}_n)
\end{equation*}
Rewrite it as addition.
\begin{multline*}
\det (\vec{\rho}_1,\dots,\vec{\rho}_i+\vec{\rho}_i,\dots,\vec{\rho}_n) \\
= \det (\vec{\rho}_1,\dots,\vec{\rho}_i,\dots,\vec{\rho}_n)
+\det (\vec{\rho}_1,\dots,\vec{\rho}_i,\dots,\vec{\rho}_n)
\end{multline*}
Of course this extends to $k=3$, etc.
This hints that besides bringing out scalars one row at a time,
determinants also break along a plus sign one row at a time.
\end{frame}
%..........
\begin{frame}{Multilinear}
\df[def:multilinear]
\ExecuteMetaData[../det1.tex]{df:Multilinear}
\lm[lem:DetsMultilinear]
\ExecuteMetaData[../det1.tex]{lm:DetsMultilinear}
\pause
\pf
\ExecuteMetaData[../det1.tex]{pf:DetsMultilinear0}
\pause
\ExecuteMetaData[../det1.tex]{pf:DetsMultilinear1}
\end{frame}
\begin{frame}
\ExecuteMetaData[../det1.tex]{pf:DetsMultilinear2}
\end{frame}
\begin{frame}
\ExecuteMetaData[../det1.tex]{pf:DetsMultilinear3}
\qed
\medskip
\noindent (\textit{Remark}.
Some authors use multilinearity to define the determinant in place of our
four conditions that lead to Gauss's Method.)
\end{frame}
\begin{frame}
Multilinearity breaks a determinant into a sum of
simple ones.
\ex
We can expand this determinant
\begin{equation*}
\begin{vmat}
1 &2 \\
3 &4
\end{vmat}
\end{equation*}
along the first row
\begin{equation*}
=\begin{vmat}
1 &0 \\
3 &4
\end{vmat}
+\begin{vmat}
0 &2 \\
3 &4
\end{vmat}
\end{equation*}
and then expand both of those on second row.
\begin{equation*}
=\begin{vmat}
1 &0 \\
3 &0
\end{vmat}
+\begin{vmat}
1 &0 \\
0 &4
\end{vmat}
+\begin{vmat}
0 &2 \\
3 &0
\end{vmat}
+\begin{vmat}
0 &2 \\
0 &4
\end{vmat}
\end{equation*}
Each matrix is simple in that
of its rows are all zeroes except
for a single entry from the starting matrix.
\pause
Of these four, the first and last are~$0$
because the matrices are
nonsingular, since they have a second row that is a multiple of
the first.
We are left with two determinants, where
in each the matrix is all zeros except for
one entry from the starting matrix in each row and each column.
We'll show our strategy for evaluating these determinants below.
\end{frame}
\begin{frame}
\ex
Similarly we can use multilinearity to expand this determinant.
\begin{align*}
\begin{vmat}
1 &2 &3 \\
4 &5 &6 \\
7 &8 &9
\end{vmat}
&=\begin{vmat}
1 &0 &0 \\
4 &0 &0 \\
7 &0 &0
\end{vmat}
+\begin{vmat}
1 &0 &0 \\
4 &0 &0 \\
0 &8 &0
\end{vmat}
+\begin{vmat}
1 &0 &0 \\
4 &0 &0 \\
0 &0 &9
\end{vmat} \\
&\quad+\begin{vmat}
1 &0 &0 \\
0 &5 &0 \\
7 &0 &0
\end{vmat}
+\begin{vmat}
1 &0 &0 \\
0 &5 &0 \\
0 &8 &0
\end{vmat}
+\begin{vmat}
1 &0 &0 \\
0 &5 &0 \\
0 &0 &9
\end{vmat} \\
&\quad+\begin{vmat}
1 &0 &0 \\
0 &0 &6 \\
7 &0 &0
\end{vmat}
+\begin{vmat}
1 &0 &0 \\
0 &0 &6 \\
0 &8 &0
\end{vmat}
+\begin{vmat}
1 &0 &0 \\
0 &0 &6 \\
0 &0 &9
\end{vmat} \\
&\quad+\begin{vmat}
0 &2 &0 \\
4 &0 &0 \\
7 &0 &0
\end{vmat}
+\qquad\cdots\qquad+
\begin{vmat}
0 &0 &3 \\
0 &0 &6 \\
0 &0 &9
\end{vmat}
\end{align*}
In each of the $3^3=27$~determinants on the right the matrix is all zeros but
for a single entry from the starting matrix in each row.
\end{frame}
\begin{frame}
\begin{equation*}
\begin{vmat}
1 &2 &3 \\
4 &5 &6 \\
7 &8 &9
\end{vmat}
=\begin{vmat}
1 &0 &0 \\
4 &0 &0 \\
7 &0 &0
\end{vmat}
+\begin{vmat}
1 &0 &0 \\
4 &0 &0 \\
0 &8 &0
\end{vmat}
+\cdots+
\begin{vmat}
0 &0 &3 \\
0 &0 &6 \\
0 &8 &0
\end{vmat}
+\begin{vmat}
0 &0 &3 \\
0 &0 &6 \\
0 &0 &9
\end{vmat}
\end{equation*}
For any of these, if two of the matrix rows have their original
matrix entries in the same column then the determinant is~$0$
since then one matrix row is a multiple of the other.
\pause
We've reduced to a sum of determinants,
where each matrix is all $0$'s but
for a single entry from the original in each row and column.
There are $3\cdot 2\cdot 1=6$ of these.
\end{frame}
\begin{frame}
\vspace*{-3ex}
\begin{align*}
\begin{vmat}
1 &2 &3 \\
4 &5 &6 \\
7 &8 &9
\end{vmat}
&=\begin{vmat}
1 &0 &0 \\
0 &5 &0 \\
0 &0 &9
\end{vmat}
+\begin{vmat}
1 &0 &0 \\
0 &0 &6 \\
0 &8 &0
\end{vmat} \\
&\quad+\begin{vmat}
0 &2 &0 \\
4 &0 &0 \\
0 &0 &9
\end{vmat}
+\begin{vmat}
0 &2 &0 \\
0 &0 &6 \\
7 &0 &0
\end{vmat} \\
&\quad+\begin{vmat}
0 &0 &3 \\
4 &0 &0 \\
0 &8 &0
\end{vmat}
+\begin{vmat}
0 &0 &3 \\
0 &5 &0 \\
7 &0 &0
\end{vmat} \\
&=45\cdot\begin{vmat}
1 &0 &0 \\
0 &1 &0 \\
0 &0 &1
\end{vmat}
+48\cdot\begin{vmat}
1 &0 &0 \\
0 &0 &1 \\
0 &1 &0
\end{vmat} \\
&\quad+72\cdot\begin{vmat}
0 &1 &0 \\
1 &0 &0 \\
0 &0 &1
\end{vmat}
+84\cdot\begin{vmat}
0 &1 &0 \\
0 &0 &1 \\
1 &0 &0
\end{vmat} \\
&\quad+96\cdot\begin{vmat}
0 &0 &1 \\
1 &0 &0 \\
0 &1 &0
\end{vmat}
+105\cdot\begin{vmat}
0 &0 &1 \\
0 &1 &0 \\
1 &0 &0
\end{vmat}
\end{align*}
\end{frame}
\begin{frame}
\noindent
After bringing out each entry from the original matrix, we are left with
matrices that are all $0$'s except for a single~$1$ in each row and column.
\end{frame}
\begin{frame}{Permutation matrices}
\ExecuteMetaData[../det1.tex]{NotationForPermutationMatrices}
\pause
\df[df:permutation]
\ExecuteMetaData[../det1.tex]{df:permutation}
So, in a permutation each number
$1$, \ldots, $n$ is the output associated with one and only one input.
We sometimes denote a permutation as the sequence
$\phi=\sequence{\phi(1),\phi(2),\ldots,\phi(n)}$.
\ex[ex:AllTwoThreePerms]
These are the $2$-permutations.
\begin{center}
\begin{tabular}{rcc}
$\phi_1$: &$1\mapsto 1$ &$2\mapsto 2$ \\
$\phi_2$: &$1\mapsto 2$ &$2\mapsto 1$
\end{tabular}
\end{center}
The sequence notation is shorter:
\( \phi_1=\sequence{1,2} \) and \( \phi_2=\sequence{2,1} \).
% \ExecuteMetaData[../det1.tex]{ex:AllTwoPerms}
\ex[ex:AllThreePerms]
\ExecuteMetaData[../det1.tex]{ex:AllThreePerms}
\end{frame}
\begin{frame}
\ExecuteMetaData[../det1.tex]{AssociatePermutationWithPermutationMatrix}
\ex
Associated with the $4$-permutation $\phi=\sequence{2,4,3,1}$ is the
matrix whose rows are the matching $\iota$'s.
\begin{equation*}
P_{\phi}
=
\begin{mat}
\iota_2 \\
\iota_4 \\
\iota_3 \\
\iota_1
\end{mat}
=
\begin{mat}
0 &1 &0 &0 \\
0 &0 &0 &1 \\
0 &0 &1 &0 \\
1 &0 &0 &0
\end{mat}
\end{equation*}
\end{frame}
\begin{frame}{Permutation expansion}
\df[df:PermutationExpansion]
\ExecuteMetaData[../det1.tex]{df:PermutationExpansion}
\pause
\medskip
\ExecuteMetaData[../det1.tex]{SummationForPermutationExpansion}
\end{frame}
\begin{frame}
\ex
Recall that there are two $2$-permutations
\( \phi_1=\sequence{1,2} \) and \( \phi_2=\sequence{2,1} \).
% So for the $\nbyn{2}$ case, the sum over all permutations has two terms.
These are the associated permutation matrices
\begin{equation*}
P_{\phi_1}=
\begin{mat}
1 &0 \\
0 &1
\end{mat}
\qquad
P_{\phi_2}=
\begin{mat}
0 &1 \\
1 &0
\end{mat}
\end{equation*}
\pause
giving this expansion.
\begin{align*}
\begin{vmat}
t_{1,1} &t_{1,2} \\
t_{2,1} &t_{2,2}
\end{vmat}
&=
t_{1,1}t_{2,2}\cdot
\begin{vmat}
1 &0 \\
0 &1
\end{vmat}
+
t_{1,2}t_{2,1}\cdot
\begin{vmat}
0 &1 \\
1 &0
\end{vmat} \\
&=
t_{1,1}t_{2,2}\cdot 1
+
t_{1,2}t_{2,1}\cdot (-1)
\end{align*}
(From prior work we know that the determinant $\deter{P_{\phi_2}}$
equals~$-1$ because we can bring that to
the identity matrix with one row swap.)
\pause
Renaming the matrix entries gives the familiar $\nbyn{2}$ formula.
\begin{equation*}
\begin{vmat}
a &b \\
c &d
\end{vmat}
=ad-bc
\end{equation*}
\end{frame}
\begin{frame}
The only thing remaining in our process of finding a formula for
the determinant (not involving Gauss's Method) is to give a formula for
the determinant of such matrices.
We do that in the next subsection.
\pause
That subsection is optional
so we state its results here.
\th[th:DetsExist]
\ExecuteMetaData[../det1.tex]{th:DetsExist}
\th[th:DeterminantOfAMatrixEqualsDeterminantOfTranspose]
\ExecuteMetaData[../det1.tex]{th:DeterminantOfAMatrixEqualsDeterminantOfTranspose}
\end{frame}
\begin{frame}{Column properties from row properties}
The fact that the determinant of the transpose equals the determinant
of the matrix allows us to transfer results: statements about rows
become statements about columns.
For instance, the first condition in the definition of determinant is that a
determinant is unchanged by a row combination:~where
$A$ is square and
$A\!\!\raisebox{-.5ex}{\smash{\grstep{k\rho_i+\rho_j}}}\!\! \hat{A}$
(with~$i\neq j$)
then $\det(A)=\det{\hat{A}}$.
To see that the same holds for columns, observe that
we can do a column combination
by transposing, doing a row combination,
and then transposing back.
These three don't change the determinant.
\pause
\co[cor:ColSwapChgSign]
\ExecuteMetaData[../det1.tex]{co:ColSwapChgSign}
\pause
\pf
\ExecuteMetaData[../det1.tex]{pf:ColSwapChgSign}
\qed
\end{frame}
% ..... Four.I.4 .....
\section{Determinants Exist (optional)}
%..........
\begin{frame}{Inversion}
\df[df:Inversion]
\ExecuteMetaData[../det1.tex]{df:Inversion}
\pause
\ex The permutation $\phi=\sequence{3,2,1}$ has three inversions:
$3$ is before $2$, $3$ is before $1$, and $2$ is before $1$.
\begin{center} \small
\begin{tabular}{r|cc}
\multicolumn{1}{r|}{\makebox[0em][r]{before}}
&$1$ &$2$ \\ \cline{1-2}
$2$ &\multicolumn{1}{c|}{$\times$} \\ \cline{3-3}
$3$ &$\times$ &\multicolumn{1}{c|}{$\times$} \\ \cline{2-3}
\end{tabular}
\end{center}
\end{frame}
\begin{frame}
\ex
This matrix
\begin{equation*}
P_{\phi}=
\begin{mat}
0 &1 &0 &0 \\
1 &0 &0 &0 \\
0 &0 &0 &1 \\
0 &0 &1 &0
\end{mat}
=
\begin{mat}
\iota_2 \\
\iota_1 \\
\iota_4 \\
\iota_3
\end{mat}
\end{equation*}
associated with the permutation $\phi=\sequence{2,1,4,3}$
has two inversions:~row~$2$
comes before row~$1$, and row~$4$ is before row~$3$.
\begin{center} \small
\begin{tabular}{r|ccc}
\multicolumn{1}{r|}{\makebox[0em][r]{before}}
&$1$ &$2$ &$3$ \\ \cline{1-2}
$2$ &\multicolumn{1}{c|}{$\times$} \\ \cline{3-3}
$3$ & &\multicolumn{1}{c|}{\ } \\ \cline{4-4}
$4$ & & &\multicolumn{1}{c|}{$\times$} \\ \cline{2-4}
\end{tabular}
\end{center}
\end{frame}
%..........
\begin{frame}
\lm[le:SwapsChangeSgn]
\ExecuteMetaData[../det1.tex]{lm:SwapsChangeSgn}
\pause
\iftoggle{showallproofs}{\pf
\ExecuteMetaData[../det1.tex]{pf:SwapsChangeSgn0}
}{%
\medskip
The book contains the proof;
we will illustrate.
There are two cases, that the rows are adjacent and that they aren't.
\ex Swapping adjacent rows
\begin{equation*}
\begin{mat}
0 &0 &0 &1 \\
1 &0 &0 &0 \\
0 &0 &1 &0 \\
0 &1 &0 &0
\end{mat}
\grstep{\rho_2\leftrightarrow\rho_3}
\begin{mat}
0 &0 &0 &1 \\
0 &0 &1 &0 \\
1 &0 &0 &0 \\
0 &1 &0 &0
\end{mat}
\end{equation*}
changes the number of inversions by one.
\begin{center} \small
\hspace*{1.5em} % nudge it to the right
\begin{tabular}{r|ccc}
\multicolumn{1}{r|}{\makebox[0em][r]{before}}
&$1$ &$2$ &$3$ \\ \cline{1-2}
$2$ &\multicolumn{1}{c|}{\ } \\ \cline{3-3}
$3$ & &\multicolumn{1}{c|}{$\times$} \\ \cline{4-4}
$4$ &$\times$ &$\times$ &\multicolumn{1}{c|}{$\times$} \\ \cline{2-4}
\end{tabular}
\hspace*{4em}
\begin{tabular}{r|ccc}
\multicolumn{1}{r|}{\makebox[0em][r]{before}}