-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy paththree_ii_a.tex
319 lines (278 loc) · 9.61 KB
/
three_ii_a.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
% see: https://groups.google.com/forum/?fromgroups#!topic/comp.text.tex/s6z9Ult_zds
\makeatletter\let\ifGm@compatii\relax\makeatother
\documentclass[10pt,t]{beamer}
\usefonttheme{professionalfonts}
\usefonttheme{serif}
\PassOptionsToPackage{pdfpagemode=FullScreen}{hyperref}
\PassOptionsToPackage{usenames,dvipsnames}{color}
% \DeclareGraphicsRule{*}{mps}{*}{}
\usepackage{../linalgjh}
\usepackage{present}
\usepackage{xr}\externaldocument{../map2} % read refs from .aux file
\usepackage{xr}\externaldocument{../vs3} % read refs from .aux file
\usepackage{catchfilebetweentags}
\usepackage{etoolbox} % from http://tex.stackexchange.com/questions/40699/input-only-part-of-a-file-using-catchfilebetweentags-package
\makeatletter
\patchcmd{\CatchFBT@Fin@l}{\endlinechar\m@ne}{}
{}{\typeout{Unsuccessful patch!}}
\makeatother
\mode<presentation>
{
\usetheme{boxes}
\setbeamercovered{invisible}
\setbeamertemplate{navigation symbols}{}
}
\addheadbox{filler}{\ } % create extra space at top of slide
\hypersetup{colorlinks=true,linkcolor=blue}
\title[Plane transformations] % (optional, use only with long paper titles)
{The action of plane transformations}
\author{\textit{Linear Algebra} \\ {\small Jim Hef{}feron}}
\institute{
\texttt{http://joshua.smcvt.edu/linearalgebra}
}
\date{}
\subject{Plane transformations}
% This is only inserted into the PDF information catalog. Can be left
% out.
\begin{document}
\begin{frame}
\titlepage
\end{frame}
% =============================================
% \begin{frame}{Reduced Echelon Form}
% \end{frame}
% ..... Three.II.1 .....
\section{Transformations of $\Re^2$}
%..........
\begin{frame}{Lines go to lines}
Consider a real space transformation
$\map{t}{\Re^n}{\Re^n}$.
A defining property of linear maps is that
$t(r\cdot\vec{v})=r\cdot t(\vec{v})$.
In a real space $\Re^n$ a line through the origin is a set
$\set{r\cdot \vec{v}\suchthat r\in\Re}$.
So $t$'s action
\begin{equation*}
r\cdot\vec{v}\mapsunder{t} r\cdot t(\vec{v})
\end{equation*}
is to send members of the line $\set{r\cdot \vec{v}\suchthat r\in\Re}$
in the domain to members of the line
$\set{s\cdot t(\vec{v})\suchthat s\in\Re}$
in the codomain.
Thus, lines through the origin
transform to lines through the origin.
Further, the action of~$t$ is determined by its effect $t(\vec{v})$
on any
nonzero vector element of the domain line.
\end{frame}
\begin{frame}
\ex
The line~$y=2x$ in the plane is
\begin{equation*}
\set{r\cdot\colvec{1 \\ 2}\suchthat r\in\Re}
\end{equation*}
and suppose that $\map{t}{\Re^2}{\Re^2}$ is this.
\begin{equation*}
\colvec{x \\ y}
\mapsto
\colvec{x+3y \\ 2x+4y}
\end{equation*}
Then for instance
\begin{equation*}
\vec{v}=\colvec{1 \\ 2}\mapsunder{t}\colvec{7 \\ 10}
\end{equation*}
The
scalar multiplication property in the definition of linear map
imposes a simple
uniformity on $t$'s action on lines through the origin:~it
has twice the effect on $2\vec{v}$, three times the
effect on $3\vec{v}$, etc.
\begin{equation*}
\colvec{2 \\ 4}\mapsunder{t}\colvec{14 \\ 20}
\qquad
\colvec{-3 \\ -6}\mapsunder{t}\colvec{-21 \\ -30}
\qquad
\colvec{r \\ 2r}\mapsunder{t}\colvec{7r \\ 10r}
\end{equation*}
The action of $t$ on any $r\vec{v}$
is determined by its action
on the nonzero $\vec{v}$.
\end{frame}
\begin{frame}
\frametitle{Pick one, any one}
Every plane vector is in some line through the origin
so to understand what $\map{t}{\Re^2}{\Re^2}$ does to plane elements it suffices to
understand what it does to lines through the origin.
\pause
By the prior slide, to understand what $t$ does to a line through the
origin it suffices to understand what it does to a single nonzero
vector in that line.
\pause
So one way to understand a transformation's action is to take
a set containing one nonzero vector from each line through the origin,
and describe where the transformation maps the elements of that set.
A natural set with one nonzero element from each line through the
origin is the upper half unit circle (we will explain the colors below).
\begin{equation*}
\set{\colvec{x \\ y}
=\colvec{\cos(t) \\ \sin(t)}
\suchthat
0\leq t<\pi}
\qquad
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_unithalfcircle.pdf}}
\end{equation*}
\end{frame}
\begin{frame}{Dilate $x$}
\ex
The map
\begin{equation*}
\colvec{x \\ y} \mapsto \colvec{2x \\ y}
\end{equation*}
doubles the first coordinates while keeping the second coordinate constant.
This shows the transformation of the upper half circle.
\begin{equation*}
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_dialatex1.pdf}}
\quad\rightarrow\quad
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_dialatex2.pdf}}
\end{equation*}
\end{frame}
\begin{frame}{Reverse orientation}
\ex
Here we dilate by a negative.
\begin{equation*}
\colvec{x \\ y} \mapsto \colvec{-x \\ y}
\end{equation*}
The transformation of the upper half circle
shows why we used the colors.
In the domain they are, taken counterclockwise, red, orange, yellow,
green, blue, indigo, violet.
In the codomain they go the opposite way.
\begin{equation*}
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_reversex1.pdf}}
\quad\rightarrow\quad
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_reversex2.pdf}}
\end{equation*}
\end{frame}
\begin{frame}{Combine dilations}
\ex
Here we dilate both $x$ and~$y$.
\begin{equation*}
\colvec{x \\ y} \mapsto \colvec{-x \\ 3y}
\end{equation*}
Here also the color order reverses, in addition to the stretching
along the $y$~axis.
\begin{equation*}
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_diagmap1.pdf}}
\quad\rightarrow\quad
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_diagmap2.pdf}}
\end{equation*}
The two dilations
combine independently in that the first entry of the output uses
only~$x$ and the second coordinate of the output uses only~$y$.
\end{frame}
\begin{frame}{Skew}
\ex
Next is a map with an output coordinate affected by both $x$ and~$y$.
\begin{equation*}
\colvec{x \\ y} \mapsto \colvec{x+2y \\ y}
\end{equation*}
\begin{equation*}
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_skew1.pdf}}
\quad\rightarrow\quad
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_skew2.pdf}}
\end{equation*}
On the $x$~axis, where~$y=0$, the output's first coordinate is the
same as the input's first coordinate.
However as we move away from the $x$~axis the $y$'s get larger, and the
first coordinate of the output is increasingly affected.
(One definition of \textit{skew} is:~having an oblique direction or
position; slanting.)
\end{frame}
\begin{frame}{Skew the other way}
\ex
We can flip which output coordinate is affected by both $x$ and~$y$.
\begin{equation*}
\colvec{x \\ y} \mapsto \colvec{x \\ 2x+y}
\end{equation*}
\begin{equation*}
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_changeskew1.pdf}}
\quad\rightarrow\quad
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_changeskew2.pdf}}
\end{equation*}
We see clear rotation in the output vectors, for instance of
the red input vector, in addition to dilation.
\end{frame}
\begin{frame}{Same idea but with a smaller effect}
\ex
\begin{equation*}
\colvec{x \\ y} \mapsto \colvec{x \\ (1/2)x+y}
\end{equation*}
\begin{equation*}
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_otherskew1.pdf}}
\quad\rightarrow\quad
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_otherskew2.pdf}}
\end{equation*}
Observe that the rotation is not even.
A red vector is rotated quite a bit but a green vector, along the
$y$~axis, is not rotated much at all.
\end{frame}
\begin{frame}{Pure roation}
\ex
This rotates every vector counterclockwise through the angle~$\theta$.
\begin{equation*}
\colvec{x \\ y} \mapsto \colvec{\cos(\theta)\cdot x-\sin(\theta)\cdot y \\ \cos(\theta)\cdot x+\sin(\theta)\cdot y}
\end{equation*}
In this picture $\theta=\pi/6$.
\begin{equation*}
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_rotation1.pdf}}
\quad\rightarrow\quad
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_rotation2.pdf}}
\end{equation*}
\end{frame}
\begin{frame}{Projection}
\ex
Maps can lose a dimension.
\begin{equation*}
\colvec{x \\ y} \mapsto \colvec{x \\ 0}
\end{equation*}
The output is one-dimensional.
\begin{equation*}
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_projection1.pdf}}
\quad\rightarrow\quad
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_projection2.pdf}}
\end{equation*}
\end{frame}
\begin{frame}
\ex
The map may project the input vector to a line that is not an axis.
\begin{equation*}
\colvec{x \\ y} \mapsto \colvec{x \\ 2x}
\end{equation*}
Still, the two-dimensional input is sent to an output that is one-dimensional.
\begin{equation*}
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_otherprojection1.pdf}}
\quad\rightarrow\quad
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_otherprojection2.pdf}}
\end{equation*}
\end{frame}
\begin{frame}{A generic map}
\ex
An arbitrary map
\begin{equation*}
\colvec{x \\ y} \mapsto \colvec{x+2y \\ 3x+4y}
\end{equation*}
may have an action that is a mixture of the effects shown above.
\begin{equation*}
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_generic1.pdf}}
\quad\rightarrow\quad
\vcenteredhbox{\includegraphics[scale=.75]{graphics/three_ii_a_generic2.pdf}}
\end{equation*}
This shows dilation, rotation, and orientation reversal.
\end{frame}
%...........................
% \begin{frame}
% \ExecuteMetaData[../gr3.tex]{GaussJordanReduction}
% \df[def:RedEchForm]
%
% \end{frame}
\end{document}