-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy paththree_iii.tex
1312 lines (1193 loc) · 32.5 KB
/
three_iii.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% see: https://groups.google.com/forum/?fromgroups#!topic/comp.text.tex/s6z9Ult_zds
\makeatletter\let\ifGm@compatii\relax\makeatother
\documentclass[10pt,t]{beamer}
\usefonttheme{professionalfonts}
\usefonttheme{serif}
\PassOptionsToPackage{pdfpagemode=FullScreen}{hyperref}
\PassOptionsToPackage{usenames,dvipsnames}{color}
% \DeclareGraphicsRule{*}{mps}{*}{}
\usepackage{../linalgjh}
\usepackage{present}
\usepackage{xr}\externaldocument{../map3} % read refs from .aux file
\usepackage{xr}\externaldocument{../map1} % read refs from .aux file
\usepackage{xr}\externaldocument{../vs3} % read refs from .aux file
\usepackage{catchfilebetweentags}
\usepackage{etoolbox} % from http://tex.stackexchange.com/questions/40699/input-only-part-of-a-file-using-catchfilebetweentags-package
\makeatletter
\patchcmd{\CatchFBT@Fin@l}{\endlinechar\m@ne}{}
{}{\typeout{Unsuccessful patch!}}
\makeatother
\mode<presentation>
{
\usetheme{boxes}
\setbeamercovered{invisible}
\setbeamertemplate{navigation symbols}{}
}
\addheadbox{filler}{\ } % create extra space at top of slide
\hypersetup{colorlinks=true,linkcolor=blue}
\title[Computing Linear Maps] % (optional, use only with long paper titles)
{Three.III Computing Linear Maps}
\author{\textit{Linear Algebra} \\ {\small Jim Hef{}feron}}
\institute{
\texttt{http://joshua.smcvt.edu/linearalgebra}
}
\date{}
\subject{Computing Linear Maps}
% This is only inserted into the PDF information catalog. Can be left
% out.
\begin{document}
\begin{frame}
\titlepage
\end{frame}
% =============================================
% \begin{frame}{Reduced Echelon Form}
% \end{frame}
% ..... Three.III.1 .....
\section{Representing Linear Maps with Matrices}
%..........
\begin{frame}{\parbox[t]{\paperwidth}{Linear maps are determined by the action on a basis}}
Fix a domain space~$V$
with basis~$\sequence{\vec{\beta}_1,\ldots,\vec{\beta}_n}$,
and a codomain space~$W$.
We've seen that to specify the action of a
homomorphism $\map{h}{V}{W}$ on all domain vectors, we need only
specify its action
on the basis elements.
\begin{equation*}
h(\vec{v})=h(c_1\cdot\vec{\beta}_1+\cdots+c_n\cdot\vec{\beta}_n)
=c_1\cdot h(\vec{\beta}_1)+\cdots+c_n\cdot h(\vec{\beta}_n)
\tag{$*$}
\end{equation*}
We've called this extending the action linearly from the basis to the entire
domain.
We now introduce a scheme for these calculations.
\pause\medskip
\ex
Let the domain be $V=\polyspace_2$ and the codomain be $W=\Re^2$,
with these bases.
\begin{equation*}
B_{V}=\sequence{1,1+x,1+x+x^2}
\qquad
B_{W}
=\sequence{\colvec{2 \\ 0}, \colvec{-1 \\ 1}}
\end{equation*}
Suppose that $\map{h}{\polyspace_2}{\Re^2}$ has this
action on the domain basis.
\begin{equation*}
h(1)=\colvec{0 \\ 1}
\quad
h(1+x)=\colvec{3 \\ 2}
\quad
h(1+x+x^2)=\colvec{-2 \\ -1}
\end{equation*}
\end{frame}
\begin{frame}
\noindent With this effect on the domain's basis,
\begin{equation*}
h(\vec{\beta}_1)=\colvec{0 \\ 1}
\quad
h(\vec{\beta}_2)=\colvec{3 \\ 2}
\quad
h(\vec{\beta}_3)=\colvec{-2 \\ -1}
\end{equation*}
next find the
representation of the three outputs
with respect to the codomain's basis $B_{W}$.
\begin{align*}
&\rep{h(\vec{\beta}_1)}{B_{W}}
=\colvec{1/2 \\ 1}
\qquad\text{since }
\colvec{0 \\ 1}=(1/2)\cdot\colvec{2 \\ 0}+1\cdot\colvec{-1 \\ 1} \\
&\rep{h(\vec{\beta}_2)}{B_{W}}
=\colvec{5/2 \\ 2}
\qquad\text{since }
\colvec{3 \\ 2}=(5/2)\cdot\colvec{2 \\ 0}+2\cdot\colvec{-1 \\ 1} \\
&\rep{h(\vec{\beta}_3)}{B_{W}}
=\colvec{-3/2 \\ -1}
\qquad\text{since }
\colvec{-2 \\ -1}=(-3/2)\cdot\colvec{2 \\ 0}-1\cdot\colvec{-1 \\ 1}
\end{align*}
\pause
Summarize by writing those side-by-side.
\begin{equation*}
\begin{mat}
1/2 &5/2 &-3/2 \\
1 &2 &-1
\end{mat}
\end{equation*}
This is the matrix representation of~$h$ (with respect to $B_V,B_W$).
\end{frame}
\begin{frame}
The point of arranging those numbers in that way is that
if we start by representing a domain vector with respect to the domain's basis
$\vec{v}=c_1\cdot\vec{\beta}_1+c_2\cdot\vec{\beta}_2+c_3\cdot\vec{\beta}_3$
% \begin{equation*}
% \rep{\vec{v}}{B_{V}}=\colvec{c_1 \\ c_2 \\ c_3}
% \end{equation*}
and apply equation~($*$)
\begin{align*}
h(c_1\vec{\beta}_1+c_2\vec{\beta}_2+c_3\vec{\beta}_3)
&=c_1\cdot h(\vec{\beta}_1)+c_2\cdot h(\vec{\beta}_2)+c_3\cdot h(\vec{\beta}_3) \\
&=c_1\cdot\bigl((1/2)\cdot\colvec{2 \\ 0}+1\cdot\colvec{-1 \\ 1}\bigr) \\
&\quad +c_2\cdot\bigl((5/2)\cdot\colvec{2 \\ 0}+2\cdot\colvec{-1 \\ 1}\bigr) \\
&\quad +c_3\cdot\bigl((-3/2)\cdot\colvec{2 \\ 0}-1\cdot\colvec{-1 \\ 1}\bigr)
\end{align*}
then regrouping
\begin{equation*}
=((1/2)c_1+(5/2)c_2-(3/2)c_3)\cdot\colvec{2 \\ 0}
+(1c_1+2c_2-1c_3)\cdot\colvec{-1 \\ 1}
\end{equation*}
expresses the image of $h(\vec{v})$ with respect to the codomain's
basis.
\begin{equation*}
\rep{h(\vec{v})}{B_{W}}
=\colvec{(1/2)c_1+(5/2)c_2-(3/2)c_3 \\ 1c_1+2c_2-1c_3}
\end{equation*}
\end{frame}
\begin{frame}
\noindent
In summary, to represent application of the linear map
\begin{equation*}
h(\vec{v})
\end{equation*}
we write the representation of the map next to the representation of
the input
\begin{equation*}
\begin{mat}
1/2 &5/2 &-3/2 \\
1 &2 &-1
\end{mat}_{B_V,B_W}
\colvec{c_1 \\ c_2 \\ c_3}_{B_V}
\end{equation*}
and compute the representation of the output.
\begin{equation*}
\rep{h(\vec{v})}{B_{W}}=\colvec{(1/2)c_1+(5/2)c_2-(3/2)c_3 \\ 1c_1+2c_2-1c_3}_{B_W}
\end{equation*}
\pause
The way the numbers combine to do this computation is:
take
the dot product of the rows of the representing matrix
with the single column
representing the input,
to get the single column representing the output.
\end{frame}
%..........
\begin{frame}{Matrix representation of a linear map}
\df[def:MatRepMap]
\ExecuteMetaData[../map3.tex]{df:MatRepMap}
\pause
\medskip
(We often omit the matrix's subscript $B,D$.)
\end{frame}
\begin{frame}
\ex
Consider projection $\map{\pi}{\Re^2}{\Re^2}$ onto the $x$-axis.
\begin{equation*}
\colvec{a \\ b}\mapsunder{\pi}\colvec{a \\ 0}
\end{equation*}
Let the domain and codomain bases be
\begin{equation*}
B=\sequence{\colvec{1 \\ 1}, \colvec{-1 \\ 1}}
\qquad
D=\sequence{\colvec{0 \\ 1}, \colvec{2 \\ 2}}
\end{equation*}
then by the computations
\begin{align*}
\colvec{1 \\ 1}\mapsunder{\pi}\colvec{1 \\ 0}
&\quad\text{so}\quad
\rep{\pi(\vec{\beta}_1)}{D}=\colvec{-1 \\ 1/2} \\
\colvec{-1 \\ 1}\mapsunder{\pi}\colvec{-1 \\ 0}
&\quad\text{so}\quad
\rep{\pi(\vec{\beta}_2)}{D}=\colvec{1 \\ -1/2}
\end{align*}
this is the matrix representation of $\pi$.
\begin{equation*}
\rep{\pi}{B,D}=
\begin{mat}
-1 &1 \\
1/2 &-1/2
\end{mat}
\end{equation*}
\end{frame}
\begin{frame}
\ex
Again consider projection onto the $x$-axis
\begin{equation*}
\colvec{a \\ b}\mapsunder{\pi}\colvec{a \\ 0}
\end{equation*}
but this time take the input and output bases to be the standard.
\begin{equation*}
B=D=\stdbasis_2
=\sequence{\colvec{1 \\ 0}, \colvec{0 \\ 1}}
\end{equation*}
We have
\begin{gather*}
\colvec{1 \\ 0}\mapsunder{\pi}\colvec{1 \\ 0}
\quad\text{ so }
\rep{\pi(\vec{\beta}_1)}{D}=\colvec{1 \\ 0} \\
\colvec{0 \\ 1}\mapsunder{\pi}\colvec{0 \\ 0}
\quad\text{ so }
\rep{\pi(\vec{\beta}_2)}{D}=\colvec{0 \\ 0}
\end{gather*}
and this is $\rep{\pi}{\stdbasis_2,\stdbasis_2}$.
\begin{equation*}
\begin{mat}
1 &0 \\
0 &0
\end{mat}
\end{equation*}
\end{frame}
\begin{frame}
\ex Consider the domain~$\Re^2$ and the codomain~$\Re$.
Recall that with respect to the standard basis, a vector represents itself.
\begin{equation*}
\rep{\colvec{-2 \\ 2}}{\stdbasis_2}=\colvec{-2 \\ 2}_{\stdbasis_2}
\end{equation*}
To represent $\map{h}{\Re^2}{\Re}$
\begin{equation*}
\colvec{a \\ b}\mapsunder{h} 2a+3b
\end{equation*}
with respect to
$\stdbasis_2$ and~$\stdbasis_1$,
first find the effect of $h$ on the domain's basis.
\begin{equation*}
\colvec{1 \\ 0}\mapsto 2
\qquad
\colvec{0 \\ 1}\mapsto 3
\end{equation*}
Represent those with respect to the codomain's basis.
\begin{equation*}
\rep{h(\vec{e}_1)}{\stdbasis_1}=\colvec{2}
\qquad
\rep{h(\vec{e}_2)}{\stdbasis_1}=\colvec{3}
\end{equation*}
This is $\nbym{1}{2}$ matrix representation.
\begin{equation*}
H=\rep{h}{\stdbasis_2,\stdbasis_1}
=
\begin{mat}
2 &3
\end{mat}
\end{equation*}
\end{frame}
%..........
\begin{frame}\vspace*{-.5ex}
\th[th:MatMultRepsFuncAppl]
\ExecuteMetaData[../map3.tex]{th:MatMultRepsFuncAppl}
\end{frame}
\begin{frame}
\pf
This formalizes the example that began this subsection.
See \nearbyexercise{exer:MatVecMultRepLinMap}.
\qed
\pause
\medskip
\df[def:MatrixVecProd]
\ExecuteMetaData[../map3.tex]{df:MatrixVecProd}
\pause
\ex
We can perform the operation without any reference to spaces and bases.
\begin{equation*}
\begin{mat}[r]
3 &1 &2 \\
0 &-2 &5
\end{mat}
\colvec[r]{4 \\ -1 \\ -3}
=\colvec{3\cdot 4+1\cdot(-1)+2\cdot(-3) \\ 0\cdot 4-2\cdot(-1)+5\cdot(-3)}
=\colvec[r]{5 \\ -13}
\end{equation*}
\end{frame}
\begin{frame}
\ex
Recall the matrix
representing
projection $\map{\pi}{\Re^2}{\Re^2}$ onto the $x$-axis
\begin{equation*}
\rep{\pi}{B,D}=
\begin{mat}
-1 &1 \\
1/2 &-1/2
\end{mat}
\end{equation*}
% \begin{equation*}
% \colvec{a \\ b}\mapsunder{\pi}\colvec{a \\ 0}
% \end{equation*}
with respect to these.
\begin{equation*}
B=\sequence{\colvec{1 \\ 1}, \colvec{-1 \\ 1}}\quad
D=\sequence{\colvec{0 \\ 1}, \colvec{2 \\ 2}}
\end{equation*}
The domain vector
\begin{equation*}
\vec{v}=\colvec{-1 \\ 5}
\end{equation*}
has this representation with respect to the domain basis.
\begin{equation*}
\rep{\vec{v}}{B}=\colvec{2 \\ 3}
\qquad
\text{since
$2\cdot\colvec{1 \\ 1}+3\cdot\colvec{-1 \\ 1}=\colvec{-1 \\ 5}$}
\end{equation*}
\end{frame}
\begin{frame}
\noindent The matrix-vector product
gives the representation
\begin{equation*}
\begin{mat}
-1 &1 \\
1/2 &-1/2
\end{mat}
\colvec{2 \\ 3}
=\colvec{1 \\ -1/2}
=\rep{\,\pi(\vec{v})\,}{D}
\end{equation*}
As a check,
\begin{equation*}
1\cdot\colvec{0 \\ 1}-(1/2)\cdot\colvec{2 \\ 2}
=\colvec{-1 \\ 0}
\end{equation*}
so it correctly computes the action of the projection map on the domain vector.
\begin{equation*}
\pi(\,\colvec{-1 \\ 5}\,)=\colvec{-1 \\ 0}
\end{equation*}
\end{frame}
\begin{frame}
\ex Recall also that the map $\map{h}{\Re^2}{\Re}$ with this action
\begin{equation*}
\colvec{a \\ b}\mapsunder{h} 2a+3b
\end{equation*}
is represented
with respect to the standard bases $\stdbasis_2,\stdbasis_1$ by a
$\nbym{1}{2}$ matrix.
\begin{equation*}
\rep{h}{\stdbasis_2,\stdbasis_1}
=
\begin{mat}
2 &3
\end{mat}
\end{equation*}
The domain vector
\begin{equation*}
\vec{v}=\colvec{-2 \\ 2}
\qquad
\rep{\vec{v}}{\stdbasis_2}
=\colvec{-2 \\ 2}
\end{equation*}
has this image.
\begin{equation*}
\rep{h(\vec{v})}{\stdbasis_1}
=
\begin{mat}
2 &3
\end{mat}
\colvec{-2 \\ 2}
=
\colvec{2}_{\stdbasis_1}
\end{equation*}
Since this is a representation
with respect to the standard basis $\stdbasis_1$,
meaning that vectors represent themselves,
the image is $h(\vec{v})=2$.
\end{frame}
% ..... Three.III.2 .....
\section{Any Matrix Represents a Linear Map}
%..........
\begin{frame}
The prior subsection shows how to start with a linear map and produce its matrix
representation.
What about the converse?
\ex
Fix a matrix
\begin{equation*}
H=\begin{mat}
1 &2 \\
3 &4
\end{mat}
\end{equation*}
and also fix a domain and codomain, with bases.
\begin{equation*}
\stdbasis_2\subset\Re^2
\quad
\sequence{1-x,1+x}\subset\polyspace_1
\end{equation*}
Is there a linear map between the spaces associated with the matrix?
\pause
Consider $\map{h}{\Re^2}{\polyspace_1}$ defined by:
for any domain vector $\vec{v}$, represent it with respect to the domain basis
\begin{equation*}
\vec{v}=c_1\vec{e}_1+c_2\vec{e}_2
\qquad
\rep{\vec{v}}{E_2}=\colvec{c_1 \\ c_2}
\end{equation*}
multiply that representation by~$H$
\begin{equation*}
\begin{mat}
1 &2 \\
3 &4
\end{mat}
\colvec{c_1 \\ c_2}
=\colvec{c_1+2c_2 \\ 3c_1+4c_2}
\end{equation*}
and then call $h(\vec{v})$ the codomain vector represented by
the result.
\begin{equation*}
h(\vec{v})=(c_1+2c_2)\cdot (1-x)+(3c_1+4c_2)\cdot(1+x)
\end{equation*}
\end{frame}
\begin{frame}
Note first that $h$ is a function, that is, it is well-defined\Dash
for a given input $\vec{v}$, the output $h(\vec{v})$ exists and is unique.
This is because
the representation of a vector with respect to a basis can be done in
one and only one way.
\pause
We will now verify that $h$ is a linear function.
Fix domain vectors $\vec{u},\vec{v}\in\Re^2$ and represent them with
respect to the domain basis.
Multiply $c\cdot\rep{\vec{u}}{B}+d\cdot\rep{\vec{w}}{D}$ by $H$.
\begin{align*}
\begin{mat}
1 &2 \\
3 &4
\end{mat}
(c\cdot\colvec{u_1 \\ u_2}+d\cdot\colvec{v_1 \\ v_2})
&=
\begin{mat}
1 &2 \\
3 &4
\end{mat}
\colvec{cu_1+dv_1 \\ cu_2+dv_2} \\
&=
\colvec{1(cu_1+dv_1)+2(cu_2+dv_2) \\ 3(cu_1+dv_1)+4(cu_2+dv_2)} \\
&=
\colvec{1cu_1+2cu_2 \\ 3cu_1+4cu_2}
+
\colvec{1dv_1+2dv_2 \\ 3dv_1+4dv_2} \\
&=
c\cdot\begin{mat}
1 &2 \\
3 &4
\end{mat}
\colvec{u_1 \\ u_2}
+
d\cdot\begin{mat}
1 &2 \\
3 &4
\end{mat}
\colvec{v_1 \\ v_2}
\end{align*}
By the definition of $h$,
the result is $c\cdot\rep{h(\vec{u})}{D}+d\cdot\rep{h(\vec{v})}{D}$.
\end{frame}
\begin{frame}
\th[th:MatIsLinMap]
\ExecuteMetaData[../map3.tex]{th:MatIsLinMap}
\iftoggle{showallproofs}{
\pause
\pf
\ExecuteMetaData[../map3.tex]{pf:MatIsLinMap}
\qed
}{
\bigskip
The book has the proof.
}
\end{frame}
%..........
\begin{frame}
We will connect some properties of linear maps
with properties of the associated matrices.
First an easy one:
observe that $\map{h}{V}{W}$ is the zero map $\vec{v}\mapsto\zero$
if and only
if it is represented, with respect to any bases, by the zero matrix.
\pause
For one direction, assume that $h$ is the zero map.
Then for any bases $B,D$ we have $h(\vec{\beta}_i)=\zero_W$, which is
represented with respect to $D$ by the column vector of zeroes.
Thus $h$ is represented by the zero matrix.
\pause
For the other direction
assume that there are bases $B,D$ such that $\rep{h}{B,D}$ is the zero
matrix.
For each $\vec{\beta}_i$ we have that $\rep{h(\vec{\beta}_1)}{D}$ is a
vector of zeros, and so $h(\vec{\beta}_i)$ is $\zero_W$.
Extending linearly gives that $h$ maps each $\vec{v}\in V$ to $\zero_W$,
and $h$ is the zero map.
\pause
\ex The zero map $\map{z}{\Re^2}{\Re^3}$ is represented,
with respect to any pair of bases,
by the $\nbym{2}{3}$
zero matrix.
\begin{equation*}
Z=
\begin{mat}
0 &0 \\
0 &0 \\
0 &0
\end{mat}
\end{equation*}
% \pause
% \medskip
% One thing this example does not illustrate is that typically a linear map
% will have many different matrices representing it, with respect to
% the many different pairs of bases~$B,D$.
% A matrix property that derives from the map will be shared across
% all these representing matrices.
\end{frame}
%..........
\begin{frame}
\th[th:RankMatEqRankMap]
\ExecuteMetaData[../map3.tex]{th:RankMatEqRankMap}
\iftoggle{showallproofs}{
\pause
\pf
\ExecuteMetaData[../map3.tex]{pf:RankMatEqRankMap0}
\pause
\ExecuteMetaData[../map3.tex]{pf:RankMatEqRankMap1}
}{
\bigskip
The book has the proof.
}
\end{frame}
\iftoggle{showallproofs}{
\begin{frame}
\ExecuteMetaData[../map3.tex]{pf:RankMatEqRankMap2}
\qed
\end{frame}
}{}
%..........
\begin{frame}
\ex
Consider the linear transformation $\map{t}{\Re^2}{\Re^2}$
given by
\begin{equation*}
\colvec{a \\ b}\mapsto\colvec{2a-b \\ 2a-b}
\end{equation*}
Its range is the line~$x=y$ and so the rank of the map
is~$1$.
\pause
We will see two matrices representing this map,
the first with respect to these.
\begin{equation*}
B=\sequence{\colvec{1 \\ 1}, \colvec{-1 \\ 1}},
\quad
D=\sequence{\colvec{1/2 \\ 0}, \colvec{0 \\ 1/3}}
\end{equation*}
This calculation is routine.
\begin{equation*}
\rep{t(\vec{\beta}_1)}{D}=\rep{\colvec{1 \\ 1}}{D}=\colvec{2 \\ 3}
\qquad
\rep{\colvec{-3 \\ -3}}{D}=\colvec{-6 \\ -9}
\end{equation*}
The representing matrix has matrix rank~$1$ since the second row is $3/2$ of
the first.
\begin{equation*}
\rep{t}{B,D}
=
\begin{mat}
2 &-6 \\
3 &-9
\end{mat}
\end{equation*}
\end{frame}
\begin{frame}
Still considering $\map{t}{\Re^2}{\Re^2}$
given by
\begin{equation*}
\colvec{a \\ b}\mapsto\colvec{2a-b \\ 2a-b}
\end{equation*}
this time represent it with respect to the standard bases
$\stdbasis_3,\stdbasis_3$.
\begin{align*}
&t(\vec{e}_1)=t(\colvec{1 \\ 0})=\colvec{2 \\ 2}
\qquad \rep{\colvec{2 \\ 2}}{\stdbasis_2}=\colvec{2 \\ 2} \\
&t(\vec{e}_2)=t(\colvec{0 \\ 1})=\colvec{-1 \\ -1}
\qquad \rep{\colvec{-1 \\ -1}}{\stdbasis_2}=\colvec{-1 \\ -1}
\end{align*}
(Remember that with respect to the standard basis, a vector represents itself.)
\begin{equation*}
\rep{t}{\stdbasis_2,\stdbasis_2}
=
\begin{mat}
2 &-1 \\
2 &-1
\end{mat}
\end{equation*}
Gauss's Method on that matrix ends with one
nonzero row so it has matrix rank~$1$, as on the prior slide.
\end{frame}
%..........
\begin{frame}
\co[cor:MatDescsMap]
\ExecuteMetaData[../map3.tex]{co:MatDescsMap}
\iftoggle{showallproofs}{
\pause
\pf
\ExecuteMetaData[../map3.tex]{pf:MatDescsMap0}
\pause
\ExecuteMetaData[../map3.tex]{pf:MatDescsMap1}
\qed
}{
\bigskip
The book has the proof.
There are many examples in the section below.
}
\end{frame}
\begin{frame}
\ex
Any transformation rotating vectors
counterclockwise by $\Theta$~radians $\map{t_\Theta}{\Re^2}{\Re^2}$
is represented with respect to the
standard bases by this matrix.
\begin{equation*}
\rep{t_\Theta}{\stdbasis_2,\stdbasis_2}
=
\begin{mat}[r]
\cos\Theta &-\sin\Theta \\
\sin\Theta &\cos\Theta
\end{mat}
\end{equation*}
The $\Theta=\pi/4$ instance is
\begin{equation*}
\rep{t_{\pi/4}}{\stdbasis_2,\stdbasis_2}
=
\begin{mat}[r]
\sqrt{2}/2 &-\sqrt{2}/2 \\
\sqrt{2}/2 &\sqrt{2}/2
\end{mat}
=(\sqrt{2}/2)\cdot
\begin{mat}
1 &-1 \\
1 &1
\end{mat}
\end{equation*}
and the rank of this matrix is two, reflecting
that the map $t_{\pi/4}$ is one-to-one and onto.
\end{frame}
%..........
\begin{frame}
\df[df:NonsingularMap]
\ExecuteMetaData[../map3.tex]{df:NonsingularMap}
% \end{frame}
% %..........
% \begin{frame}
\pause
\lm[le:NonsingMatIffNonsingMap]
\ExecuteMetaData[../map3.tex]{le:NonsingMatIffNonsingMap}
\pause
\pf
\ExecuteMetaData[../map3.tex]{pf:NonsingMatIffNonsingMap0}
\pause
\ExecuteMetaData[../map3.tex]{pf:NonsingMatIffNonsingMap1}
\qed
\end{frame}
%..........
\begin{frame}
\ex
This matrix
\begin{equation*}
\begin{mat}
0 &3 \\
-1 &2
\end{mat}
\end{equation*}
is nonsingular since by inspection its two rows form a linearly independent
set.
So any map, with any domain and codomain, and represented by this matrix
with respect to any pair of bases,
is an isomorphism.
\pause
\ex
Gauss's method shows that this matrix
\begin{equation*}
\begin{mat}
2 &1 &-2 \\
3 &2 &1 \\
-1 &0 &5
\end{mat}
\end{equation*}
is singular so any map that it represents will be a homomorphism that
is not an isomorphism.
\end{frame}
%=======================================
\section{Finding Map Facts From the Matrix}
\begin{frame}{Review examples}
We will revisit some of the results about
representing a map with a matrix, doing a number of calculations that
show how we can study the map with calculations on
associated matrices.
Nothing here is new; it is all about integrating results that we have seen.
The examples are based on this equation.
\begin{equation*}
\rep{h}{B,D}\cdot\rep{\vec{v}}{B}=\rep{h(\vec{v})}{D}
\tag{$*$}
\end{equation*}
\ex
First, the number of rows and columns.
This is an instance of~($*$).
\begin{equation*}
\begin{mat}
1 &2 &3 \\
4 &5 &6
\end{mat}
\colvec{x \\ y \\ z}
=
\colvec{a \\ b}
\end{equation*}
(In this section we will represent
the domain vector using $x$, $y$, etc., and
represent the codomain vector with $a$, $b$, etc.)
\pause
Matrix-vector multiplication takes the
dot product of $H$'s rows with $\rep{\vec{v}}{B}$'s column.
So, given a matrix $H$ we can tell the dimension of $h$'s domain because it
is the width of~$H$'s rows, the number of columns in~$H$.
Similarly, $h$'s codomain's dimension is the number of rows in~$H$.
\end{frame}
\begin{frame}{Onto and one-to-one}
\ex
Consider this linear map $\map{h}{\Re^3}{\Re^3}$.
\begin{equation*}
\colvec{x \\ y \\ z}\mapsto\colvec{x \\ x+z \\ x-z}
\end{equation*}
A function is onto if every codomain member~$\vec{w}$
is the image of at least one domain member~$\vec{v}$.
This map is not onto because
there is a restriction on which outputs are possible:
the first component of the output must be the average of
the other two.
A function is one-to-one if every codomain member~$\vec{w}$
is the image of at most one domain member~$\vec{v}$.
This~$h$ is not one-to-one because the
output entries don't use~$y$,
so holding $x$ and~$z$ constant and varying~$y$ gives many inputs all
associated with the same output.
\pause
\medskip
% License: Creative Commons, by Wikiphoto
% Source: http://www.wikihow.com/Image:Duel-in-Red-Dead-Redemption-Step-1.jpg
\begin{graphicbytext}[-2ex]{.26}{duel.jpg}
Although we were able to decide onto-ness and one-to-one-ness here,
we are left with the worry
that we will one day meet a function definition too involved to solve.
We want an algorithm.
\end{graphicbytext}
\end{frame}
\begin{frame}
For that, fix bases.
We will use
$\stdbasis_3\subseteq\Re^3$ for both the domain and codomain.
Finding the action of~$h$ on the domain's basis
\begin{equation*}
\colvec{1 \\ 0 \\ 0}\mapsto\colvec{1 \\ 1 \\ 1}
\quad
\colvec{0 \\ 1 \\ 0}\mapsto\colvec{0 \\ 0 \\ 0}
\quad
\colvec{0 \\ 0 \\ 1}\mapsto\colvec{0 \\ 1 \\ -1}
\end{equation*}
and representing those outputs with respect to the codomain's basis
gives $H$.
\begin{equation*}
\rep{h}{\stdbasis_3,\stdbasis_3}
=
\begin{mat}
1 &0 &0 \\
1 &0 &1 \\
1 &0 &-1
\end{mat}
\end{equation*}
\pause
This is the instance of equation~($*$).
\begin{align*}
\rep{h}{B,D}\cdot\rep{\vec{v}}{B}
&=\rep{h(\vec{v})}{D} \\
\begin{mat}
1 &0 &0 \\
1 &0 &1 \\
1 &0 &-1
\end{mat}
\colvec{x \\ y \\ z}
&=
\colvec{a \\ b \\ c}
\end{align*}
\end{frame}
\begin{frame}
\noindent Solve for $x$, $y$, and~$z$ using Gauss's Method.
\begin{align*}
\begin{amat}{3}
1 &0 &0 &a \\
1 &0 &1 &b \\
1 &0 &-1 &c
\end{amat}
&\grstep[-\rho_1+\rho_3]{-\rho_1+\rho_2}
\begin{amat}{3}
1 &0 &0 &a \\
0 &0 &1 &-a+b \\
0 &0 &-1 &-a+c
\end{amat} \\
&\grstep{\rho_2+\rho_3}
\begin{amat}{3}
1 &0 &0 &a \\
0 &0 &1 &-a+b \\
0 &0 &0 &-2a+b+c
\end{amat}
\end{align*}
\pause
This calculation shows that $h$ is not onto.
Only some codomain vectors~$\vec{w}$
have
an associated domain vector~$\vec{v}$,
because only some representation entry triples $a,b,c$ work.
Specifically, only those~$\vec{w}$'s
whose representation entries satisfy
$0=-2a+b+c$ have an associated~$\vec{v}$.
\pause
This calculation also shows that~$h$ is not one-to-one.
A codomain vector~$\vec{w}$ that appears as an output\Dash
one whose representation entries satisfy
$0=-2a+b+c$\Dash is the image of any domain vector~$\vec{v}$
whose representation entries satisfy $x=a$, $z=-a+b$, and~$y\in\Re$.
That's not one-to-one, it is infinitely-many-to-one.
\end{frame}
\begin{frame}
So the algorithm is to fix bases and work with the resulting representations.
\pause
Recall that for a real space~$\Re^m$ and with respect to
the standard basis~$\stdbasis_m$ a vector represents itself,
as here.
\begin{equation*}
\rep{\colvec{1 \\ 1 \\ 1}}{\stdbasis_3}
=\colvec{1 \\ 1 \\ 1}
\end{equation*}
This example and the next few
use real spaces with standard bases
so that we can pass back and forth between vectors and their representations.
% Our final example will be a non-real space one.
With that, the earlier calculation gives the range space
\begin{equation*}
\rangespace{h}
=\set{\colvec{a \\ b \\ c}\suchthat a=(b+c)/2}
=\set{\colvec{1/2 \\ 1 \\ 0}b+\colvec{1/2 \\ 0 \\ 1}c\suchthat b,c\in\Re} \end{equation*}
and so $\rank(h)=2$.
We have shown again that the map is not onto since the range space is not
$3$-dimensional, it is $2$-dimensional.
\end{frame}
\begin{frame}
To find the null space, in the calculation set $a=b=c=0$.
\begin{equation*}
\nullspace{h}
=\set{\colvec{x \\ y \\ z}\suchthat \text{$x=0$ and $z=0$}}
=\set{\colvec{0 \\ 1 \\ 0}y\suchthat y\in\Re}
\end{equation*}
The nullity is~$1$.
This shows again that the map is not one-to-one, since the null space is not
$0$~dimensional, it is $1$~dimensional.
\pause
\medskip
\begin{graphicbytext}{.25}{asy/three_iii_cosets.pdf}
Finally, recall that the map breaks the domain into look-alike
inverse images\Dash if one
$h^{-1}(\vec{w})$
is not a singleton then they are all not singletons\Dash so
we look at the null space as the prototype.
It is shown in dark blue.
\end{graphicbytext}
\begin{equation*}
h^{-1}(\zero_W)=\nullspace{h}
=\set{\colvec{x \\ y \\ z}\suchthat x=z=0,\,y\in\Re}
\end{equation*}
In pale blue are two other inverse image sets.
\begin{equation*}
h^{-1}(\colvec{0 \\ 1 \\ -1})=\set{\colvec{0 \\ y \\ 1}\suchthat y\in\Re}
\qquad
h^{-1}(\colvec{1 \\ 0 \\ 2})=\set{\colvec{1 \\ y \\ 1}\suchthat y\in\Re}
\end{equation*}
\end{frame}