-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy paththree_vi.tex
327 lines (276 loc) · 8.85 KB
/
three_vi.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
% see: https://groups.google.com/forum/?fromgroups#!topic/comp.text.tex/s6z9Ult_zds
\makeatletter\let\ifGm@compatii\relax\makeatother
\documentclass[10pt,t]{beamer}
\usefonttheme{professionalfonts}
\usefonttheme{serif}
\PassOptionsToPackage{pdfpagemode=FullScreen}{hyperref}
\PassOptionsToPackage{usenames,dvipsnames}{color}
% \DeclareGraphicsRule{*}{mps}{*}{}
\usepackage{../linalgjh}
\usepackage{present}
\usepackage{xr}\externaldocument{../map6} % read refs from .aux file
\usepackage{catchfilebetweentags}
\usepackage{etoolbox} % from http://tex.stackexchange.com/questions/40699/input-only-part-of-a-file-using-catchfilebetweentags-package
\makeatletter
\patchcmd{\CatchFBT@Fin@l}{\endlinechar\m@ne}{}
{}{\typeout{Unsuccessful patch!}}
\makeatother
\mode<presentation>
{
\usetheme{boxes}
\setbeamercovered{invisible}
\setbeamertemplate{navigation symbols}{}
}
\addheadbox{filler}{\ } % create extra space at top of slide
\hypersetup{colorlinks=true,linkcolor=blue}
\title[Projection] % (optional, use only with long paper titles)
{Three.VI Projection}
\author{\textit{Linear Algebra} \\ {\small Jim Hef{}feron}}
\institute{
\texttt{http://joshua.smcvt.edu/linearalgebra}
}
\date{}
\subject{Projection}
% This is only inserted into the PDF information catalog. Can be left
% out.
\begin{document}
\begin{frame}
\titlepage
\end{frame}
% =============================================
% \begin{frame}{Reduced Echelon Form}
% \end{frame}
% ..... Three.VI.1 .....
\section{Orthogonal Projection Into a Line}
%..........
\begin{frame}{Project a vector into a line}
\ExecuteMetaData[../map6.tex]{PictureOrthogonalProjectionIntoALine0}
\begin{center}
\includegraphics{../ch3.28}
\hspace*{0.6in}
\includegraphics{../ch3.29}
\end{center}
\pause
\ExecuteMetaData[../map6.tex]{PictureOrthogonalProjectionIntoALine1}
\pause
\ExecuteMetaData[../map6.tex]{PictureOrthogonalProjectionIntoALine2}
\end{frame}
\begin{frame}
We have decomposed $\vec{v}$ into two parts
$\vec{v}=(c_{\vec{p}}\vec{s})+(v-c_{\vec{p}}\vec{s})$.
\centergraphic{../ch3.29}
Intuitively, some of $\vec{v}$ lies with the line and that gives
the first part $c_{\vec{p}}\vec{s}$.
The part of $\vec{v}$ that lies with a line orthogonal to $\ell$
is $\vec{v}-c_{\vec{p}}\vec{s}$.
What's compelling about pairing these two parts
is that they don't interact, in that the projection of one into the line
spanned by the other is the zero vector.
\pause\bigskip\noindent\textit{Note:}
We have not given a
definition of `angle' in spaces
other than $\Re^n$'s,
so we will stick here to those spaces.
Extending the definitions to other spaces is perfectly possible but
we don't need them here.
\end{frame}
\begin{frame}
\df[def:ProjIntoLine]
\ExecuteMetaData[../map6.tex]{df:ProjIntoLine}
\ex
The projection of this $\Re^3$ vector into the line
\begin{equation*}
\vec{v}=\colvec{1 \\ -2 \\ 1}
\qquad
L=\set{c\cdot\vec{s}=c\cdot\colvec{3 \\ 1 \\ 1}\suchthat c\in\Re}
\end{equation*}
is this vector.
\begin{equation*}
\frac{\colvec{1 \\ -2 \\ 1}\dotprod\colvec{3 \\ 1 \\ 1}}{\colvec{3 \\ 1 \\ 1}\dotprod\colvec{3 \\ 1 \\ 1}}\cdot\colvec{3 \\ 1 \\ 1}
=\colvec{1/3 \\ 1/6 \\ 1/6}
\end{equation*}
\end{frame}
\begin{frame}
\noindent
Because $\vec{v}$ is nearly orthogonal to
the line~$L$
\centergraphic{asy/three_vi_3dprojtoline.pdf}
only a small part of $\vec{v}$ lies with the direction of that
line, so the projected-to red
vector $\proj{\vec{v}}{\spanof{\vec{s}\,}}$ is quite short:
($\absval{\vec{v}}=\sqrt{6}\approx 2.45$ while
$\absval{\proj{\vec{v}}{\spanof{\vec{s}\,}}}=\sqrt{1/6}\approx 0.41$).
\end{frame}
% ..... Three.VI.2 .....
\section{Gram-Schmidt Orthogonalization}
%..........
\begin{frame}{Mutually orthogonal vectors}
The prior subsection suggests that
projecting a vector $\vec{v}$ into the line spanned by \( \vec{s} \)
decomposes $\vec{v}$ into two parts, a part with the line and a part
orthogonal to that.
\begin{center} \small
\vcenteredhbox{\includegraphics{../ch3.35}}
\qquad
$\displaystyle \vec{v}=\proj{\vec{v}}{\spanof{\vec{s}\,}}
\,+\,\left(\vec{v}-\proj{\vec{v}}{\spanof{\vec{s}\,}}\right)$
\end{center}
Because these are orthogonal they are in some sense non-interacting.
Here we will develop that.
\pause
\df[df:MutuallyOrthogonal]
\ExecuteMetaData[../map6.tex]{df:MutuallyOrthogonal}
\ex
The vectors of the standard basis $\stdbasis_3\subset\Re^3$
are mutually orthogonal.
\begin{equation*}
\colvec{1 \\ 0 \\ 0}, \colvec{0 \\ 1 \\ 0}, \colvec{0 \\ 0 \\ 1}
\end{equation*}
% This remains true if we rotate this basis.
\end{frame}
\begin{frame}
\ex
These two vectors in $\Re^2$ are mutually orthogonal.
\begin{center}
$\displaystyle \colvec{1 \\ 1},\,\colvec{1 \\ -1}$
\hspace*{.4in}
\vcenteredhbox{\includegraphics{asy/three_vi_2dmutuallyortho.pdf}}
\end{center}
\end{frame}
\begin{frame}
The next result makes `non-interacting' precise.
\th[th:OrthoIsInd]
\ExecuteMetaData[../map6.tex]{th:OrthoIsInd}
\pause
\pf
\ExecuteMetaData[../map6.tex]{pf:OrthoIsInd}
\qed
\pause
\co[cor:OrthAndBigEnoughIsBasis]
\ExecuteMetaData[../map6.tex]{co:OrthAndBigEnoughIsBasis}
\pause
\pf
\ExecuteMetaData[../map6.tex]{pf:OrthAndBigEnoughIsBasis}
\qed
\pause
\df[df:OrthogonalBasis]
\ExecuteMetaData[../map6.tex]{df:OrthogonalBasis}
\end{frame}
\begin{frame}
\th[th:GramSchmidt]
\ExecuteMetaData[../map6.tex]{th:GramSchmidt}
\iftoggle{showallproofs}{
\pause
\pf
\ExecuteMetaData[../map6.tex]{pf:GramSchmidt0}
\pause
\ExecuteMetaData[../map6.tex]{pf:GramSchmidt1}
}{
\bigskip
The book has the proof.
We will instead illustrate.
}
\end{frame}
\iftoggle{showallproofs}{
\begin{frame}
\ExecuteMetaData[../map6.tex]{pf:GramSchmidt2}
\pause
\ExecuteMetaData[../map6.tex]{pf:GramSchmidt3}
\end{frame}
\begin{frame}
\ExecuteMetaData[../map6.tex]{pf:GramSchmidt4}
\end{frame}
\begin{frame}
\ExecuteMetaData[../map6.tex]{pf:GramSchmidt5}
\qed
\end{frame}
}{}
\begin{frame}
\ex
This basis for $\Re^2$
\begin{equation*}
B=\sequence{\colvec{1 \\ 2},
\colvec{1 \\ 3}}
\end{equation*}
does not have orthogonal vectors.
To derive from it a basis~$K=\sequence{\vec{\kappa}_1,\vec{\kappa}_2}$
that is orthogonal, start by taking the
first vector unchanged.
\begin{equation*}
\vec{\kappa}_1=\vec{\beta}_1=\colvec{1 \\ 2}
\end{equation*}
For $\vec{\kappa}_2$ take the part of $\vec{\beta}_2$
that does not lie with~$\vec{\kappa}_1$.
\begin{equation*}
\vec{\kappa}_2=\vec{\beta}_2-\proj{\vec{\beta}_2}{\spanof{\vec{\kappa}_1}}
=\colvec{1 \\ 3}
-\frac{\colvec{1 \\ 3}\dotprod\colvec{1 \\ 2}}{%
\colvec{1 \\ 2}\dotprod\colvec{1 \\ 2}}\colvec{1 \\ 2}
=\colvec{-2/5 \\ 1/5}
\end{equation*}
Note that $\vec{\kappa}_1$ and~$\vec{\kappa}_2$ are indeed orthogonal.
\end{frame}
\begin{frame}
\ex
This is a basis for $\Re^3$.
\begin{equation*}
B=\sequence{\colvec{1 \\ 1 \\ 2},
\colvec{-1 \\ 2 \\ 1},
\colvec{0 \\ 3 \\ -1}}
\end{equation*}
Start the orthogonal basis with $\vec{\beta}_1$.
\begin{equation*}
\vec{\kappa}_1=\colvec{1 \\ 1 \\ 2}
\end{equation*}
\pause
As in the prior slide, the next step is
$\vec{\kappa}_2=\vec{\beta}_2-\proj{\vec{\beta}_2}{\spanof{\vec{\kappa}_1}}$.
\begin{equation*}
\colvec{-1 \\ 2 \\ 1}-
\frac{\colvec{-1 \\ 2 \\ 1}\dotprod\colvec{1 \\ 1 \\ 2}}{\colvec{1 \\ 1 \\ 2}\dotprod\colvec{1 \\ 1 \\ 2}}\cdot\colvec{1 \\ 1 \\ 2}
=\colvec{-3/2 \\ 3/2 \\ 0}
\end{equation*}
\end{frame}
\begin{frame}
The third step is
$\vec{\kappa}_3=\vec{\beta}_3-\proj{\vec{\beta}_3}{\spanof{\vec{\kappa}_1}}
-\proj{\vec{\beta}_3}{\spanof{\vec{\kappa}_2}}$.
\begin{equation*}
\colvec{0 \\ 3 \\ -1}-
\frac{\colvec{0 \\ 3 \\ -1}\dotprod\colvec{1 \\ 1 \\ 2}}{\colvec{1 \\ 1 \\ 2}\dotprod\colvec{1 \\ 1 \\ 2}}\cdot\colvec{1 \\ 1 \\ 2}
-\frac{\colvec{0 \\ 3 \\ -1}\dotprod\colvec{-3/2 \\ 3/2 \\ 0}}{\colvec{-3/2 \\ 3/2 \\ 0}\dotprod\colvec{-3/2 \\ 3/2 \\ 0}}\cdot\colvec{-3/2 \\ 3/2 \\ 0}
=\colvec{4/3 \\ 4/3 \\ -4/3}
\end{equation*}
\pause
The members of $B$ are at odd angles but the members of
$K$ are mutually orthogonal.
\begin{center}
\only<2>{\makebox[2in]{$B=\sequence{\colvec{1 \\ 1 \\ 2},
\colvec{-1 \\ 2 \\ 1},
\colvec{0 \\ 3 \\ -1}}$}}
\only<3->{\makebox[2in]{$K=\sequence{\colvec{1 \\ 1 \\ 2},
\colvec{-3/2 \\ 3/2 \\ 0},
\colvec{4/3 \\ 4/3 \\ -4/3}}$}}
\hspace{.25in}
\vcenteredhbox{%
\only<2>{\includegraphics{asy/three_vi_3dgramschmidt0.pdf}}%
\only<3->{\includegraphics{asy/three_vi_3dgramschmidt1.pdf}}%
}\pause
\end{center}
\pause
We could go on to
make this basis even more like $\stdbasis_3$ by normalizing all
of its members to have length~$1$, making an \definend{orthonormal} basis.
\end{frame}
% % ..... Three.VI.3 .....
% \section{Projection Into a Subspace}
% %..........
% \begin{frame}
% \end{frame}
%...........................
% \begin{frame}
% \ExecuteMetaData[../gr3.tex]{GaussJordanReduction}
% \df[def:RedEchForm]
%
% \end{frame}
\end{document}