-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtwo_i.tex
809 lines (699 loc) · 21.7 KB
/
two_i.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
% see: https://groups.google.com/forum/?fromgroups#!topic/comp.text.tex/s6z9Ult_zds
\makeatletter\let\ifGm@compatii\relax\makeatother
\documentclass[10pt,t]{beamer}
\usefonttheme{professionalfonts}
\usefonttheme{serif}
\PassOptionsToPackage{pdfpagemode=FullScreen}{hyperref}
\PassOptionsToPackage{usenames,dvipsnames}{color}
% \DeclareGraphicsRule{*}{mps}{*}{}
\usepackage{../linalgjh}
\usepackage{present}
\usepackage{xr}\externaldocument{../vs1} % read refs from .aux file
\usepackage{catchfilebetweentags}
\usepackage{etoolbox} % from http://tex.stackexchange.com/questions/40699/input-only-part-of-a-file-using-catchfilebetweentags-package
\makeatletter
\patchcmd{\CatchFBT@Fin@l}{\endlinechar\m@ne}{}
{}{\typeout{Unsuccessful patch!}}
\makeatother
\mode<presentation>
{
\usetheme{boxes}
\setbeamercovered{invisible}
\setbeamertemplate{navigation symbols}{}
}
\addheadbox{filler}{\ } % create extra space at top of slide
\hypersetup{colorlinks=true,linkcolor=blue}
\title[Vector Space Definition] % (optional, use only with long paper titles)
{Two.I Vector Space Definition}
\author{\textit{Linear Algebra} \\ {\small Jim Hef{}feron}}
\institute{
\texttt{http://joshua.smcvt.edu/linearalgebra}
}
\date{}
\subject{Vector Space Definition}
% This is only inserted into the PDF information catalog. Can be left
% out.
\begin{document}
\begin{frame}
\titlepage
\end{frame}
% =============================================
% \begin{frame}{Reduced Echelon Form}
% \end{frame}
% ..... Two.I.1 .....
\section{Definition and examples}
% \begin{frame}{Vector space}
% \df[def:VecSpace]
% \ExecuteMetaData[../vs1.tex]{df:VectorSpace0}
% \pause
% \ExecuteMetaData[../vs1.tex]{df:VectorSpace1}
% \pause
% \ExecuteMetaData[../vs1.tex]{df:VectorSpace2}
% \end{frame}
% ..........
\begin{frame}{Vector space}
\df[def:VecSpace]
A \definend{vector space}\index{vector space!definition}
(over \( \Re \)) consists of a set \( V \) along with
two operations `+' and `\( \cdot \)' subject to the conditions
that for all vectors \( \vec{v},\vec{w},\vec{u}\in V \),
and all \definend{scalars}
\( r,s\in\Re \):
\begin{enumerate}
\item the set $V$ is \definend{closed} under
vector addition, that is,
\( \vec{v}+\vec{w}\in V \)
\item vector addition is commutative
\( \vec{v}+\vec{w}=\vec{w}+\vec{v} \)
\item vector addition is associative
\( (\vec{v}+\vec{w})+\vec{u}=\vec{v}+(\vec{w}+\vec{u}) \)
\item there is a \definend{zero vector}
\( \zero\in V \) such that
\( \vec{v}+\zero=\vec{v}\, \) for all \( \vec{v}\in V\/ \)
\item each \( \vec{v}\in V \) has an
\definend{additive inverse}
\( \vec{w}\in V \) such that \( \vec{w}+\vec{v}=\zero \)
\pause\item the set $V$ is closed under
scalar multiplication, that is,
\( r\cdot\vec{v}\in V \)
\item addition of scalars distributes over scalar multiplication
\( (r+s)\cdot\vec{v}=r\cdot\vec{v}+s\cdot\vec{v} \)
\item scalar multiplication distributes over vector addition
\( r\cdot(\vec{v}+\vec{w})=r\cdot\vec{v}+r\cdot\vec{w} \)
\item ordinary multipication of scalars associates with
scalar multiplication \( (rs)\cdot\vec{v} =r\cdot(s\cdot\vec{v}) \)
\item multiplication by the scalar~$1$ is the
identity operation \( 1\cdot\vec{v}=\vec{v} \).
\end{enumerate}
\end{frame}
% ..........
\begin{frame}
\ex
Consider the set of row vectors
consisting of all multiples of $\rowvec{1 &2}$.
\begin{equation*}
V=\set{\rowvec{a &2a}\suchthat a\in\Re}
\end{equation*}
Some members of $V$ are $\rowvec{4 &8}$, $\rowvec{1/2 &1}$,
$\rowvec{-100 &-200}$, and $\rowvec{0 &0}$.
\pause
This $V$
is a vector space under the natural addition
\begin{equation*}
\rowvec{a_1 &2a_1}+\rowvec{a_2 &2a_2}
=
\rowvec{a_1+a_2 &2a_1+2a_2}
\end{equation*}
and scalar multiplication operations.
\begin{equation*}
r\rowvec{a_1 &2a_1}
=
\rowvec{ra_1 &2ra_1}
\end{equation*}
To verify that, we will check each of the ten conditions.
Because this is the first time through the definition,
we will verify these at length.
\end{frame}\begin{frame}
We first check closure under addition~(1),
that the sum of two members of $V$
is also a member of $V$.
Take $\vec{v}$ and $\vec{w}$ to be members of $V$.
\begin{equation*}
\vec{v}=\rowvec{v_1 &2v_1}
\qquad
\vec{w}=\rowvec{w_1 &2w_1}
\end{equation*}
Then their sum
\begin{equation*}
\vec{v}+\vec{w}=
\rowvec{v_1+w_1 &2v_1+2w_1}
\end{equation*}
is also a member of $V$ because its second entry is twice its first.
\pause
Condition~(2), commutativity of addition, is straightforward.
The sums in the two orders are
\begin{equation*}
\vec{v}+\vec{w}=\rowvec{v_1+w_1 &2(v_1+w_1)}
\end{equation*}
and
\begin{equation*}
\vec{w}+\vec{v}
=
\rowvec{w_1+v_1 &2(w_1+v_1)}
\end{equation*}
and the two are equal because
$v_1+w_1$ equals $w_1+v_1$, as both are sums of real numbers
and real number addition is commutative.
\end{frame}\begin{frame}
Condition~(3), associativity of addition, is like the prior one.
The left side is
\begin{equation*}
(\vec{v}+\vec{w})+\vec{u}=\rowvec{(v_1+w_1)+u_1 &(2v_1+2w_1)+2u_1}
\end{equation*}
while the right side is this.
\begin{equation*}
\vec{v}+(\vec{w}+\vec{u})
=
\rowvec{v_1+(w_1+u_1) &2v_1+(2w_1+2u_1)}
\end{equation*}
The two are equal because real number addition is associative
$(v_1+w_1)+u_1=v_1+(w_1+u_1)$.
\pause
For condition~(4) we can just exhibit the member of $V$ with the desired
property.
So consider $\zero=\rowvec{0 &0}$.
It is a member of $V$ since its second component is twice its first.
Note that it is the required identity element with respect to addition.
\begin{align*}
\vec{v}+\zero
&=\rowvec{v_1 &2v_1}+\rowvec{0 &0} \\
&=\rowvec{v_1 &2v_1} \\
&=\vec{v}
\end{align*}
\end{frame}\begin{frame}
Condition~(5), existence of an additive inverse, is also a matter of
producing the desired element.
Given a member $\vec{v}=\rowvec{v_1 &2v_1}$ of $V$, consider
$\vec{w}=\rowvec{-v_1 &-2v_1}$.
Then $\vec{w}\in V$, and note that it cancels $\vec{v}$.
\begin{equation*}
\vec{w}+\vec{v}=\rowvec{-v_1 &-2v_1}+\rowvec{v_1 &2v_1}=\zero
\end{equation*}
\pause
We finish by verifying the five conditions having to do with scalar multiplication.
Condition~(6) is closure under scalar multiplication.
Consider a scalar $r\in\Re$ and a vector $\vec{v}=\rowvec{v_1 &2v_1}\in V$.
The scalar multiple $r\vec{v}=\rowvec{rv_1 &r2v_1}$ is also a member
of $V$ because the second component is twice the first.
\pause
Condition~(7) is that
real number addition distributes over scalar multiplication.
Let the scalars be $r,s\in\Re$, and
let the vector be $\vec{v}=\rowvec{v_1 &2v_1}\in V$.
Here is the check.
\begin{align*}
(r+s)\vec{v} &= \rowvec{(r+s)v_1 &(r+s)2v_1} \\
&=\rowvec{rv_1 &2rv_1}+\rowvec{sv_1 &2sv_1} \\
&=r\vec{v}+s\vec{v}
\end{align*}
\end{frame}\begin{frame}
For (8),
distributivity of vector addition over scalar multiplication,
take a scalar $r\in\Re$ and
two vectors $\vec{v},\vec{w}\in V$.
\begin{align*}
r(\vec{v}+\vec{w}) &=\rowvec{rv_1 &2rv_1}+\rowvec{rw_1 &2rw_1} \\
&=\rowvec{rv_1+rw_1 &2rv_1+2rw_1} \\
&=r\rowvec{v_1 &2v_1}+r\rowvec{w_1 &2w_1} \\
&=r\vec{v}+r\vec{w}
\end{align*}
\pause
For condition~(9) suppose $r,s\in\Re$ and $\vec{v}=\rowvec{v_1 &2v_1}\in V$.
The left side is $(rs)\rowvec{v_1 &2v_1}=\rowvec{(rs)v_1 &(rs)2v_1}$, while the
right side is
$r(s\rowvec{v_1 &2v_1})=r\rowvec{sv_1 &s2v_1}=\rowvec{r(sv_1) &r(s2v_1)}$.
The two are equal because
$(rs)v_1=r(sv_1)$ and $(rs)2v_1=r(s2v_1)$,
as those are real number multiplications.
\pause
Condition~(10) is simple:
$1\vec{v}=1\rowvec{v_1 &2v_1}=\rowvec{1\cdot v_1 &1\cdot 2v_1}=\vec{v}$
for any $\vec{v}\in V$.
\pause\medskip
Therefore the set
$V=\set{\rowvec{a &2a}\suchthat a\in\Re}$
is a vector space under the natural addition and scalar multiplication
operations.
\end{frame}
% ..........
\begin{frame}
\ex
The set $\Re^3$ is a vector space under the usual vector addition and
scalar multiplication operations.
\begin{equation*}
\colvec{v_1 \\ v_2 \\ v_3}
+\colvec{w_1 \\ w_2 \\ w_3}
=\colvec{v_1+w_1 \\ v_2+w_2 \\ v_3+w_3}
\quad\text{and}\quad
r\colvec{v_1 \\ v_2 \\ v_3}
=\colvec{rv_1 \\ rv_2 \\ rv_3}
\end{equation*}
To verify that, we will check the conditions (more briefly than
for the prior example).
\pause
Condition~(1) is closure under addition.
This is clear because the only condition for membership
in the set $\Re^3$ is to be a three-tall vector of reals, and the sum of
two three-tall vectors of reals is also a three-tall vector of reals.
\pause
Condition~(2) is routine.
\begin{equation*}
\vec{v}+\vec{w}
=
\colvec{v_1 \\ v_2 \\ v_3}
+\colvec{w_1 \\ w_2 \\ w_3}
=\colvec{v_1+w_1 \\ v_2+w_2 \\ v_3+w_3}
=
\colvec{w_1 \\ w_2 \\ w_3}
+\colvec{v_1 \\ v_2 \\ v_3}
=\vec{w}+\vec{v}
\end{equation*}
\end{frame}\begin{frame}
Condition~(3) is also a direct consequence of the related
real number property.
\begin{multline*}
(\vec{v}+\vec{w})+\vec{u}
=
\colvec{v_1+w_1 \\ v_2+w_2 \\ v_3+w_3}
+\colvec{u_1 \\ u_2 \\ u_3}
=\colvec{v_1+w_1+u_1 \\ v_2+w_2+u_2 \\ v_3+w_3+u_3} \\
=
\colvec{v_1 \\ v_2 \\ v_3}
+\colvec{w_1+u_1 \\ w_2+u_2 \\ w_3+u_3}
=\vec{v}+(\vec{w}+\vec{u})
\end{multline*}
\pause
For condition~(4) take the vector of $0$'s.
\begin{equation*}
\colvec{0 \\ 0 \\ 0}+\colvec{v_1 \\ v_2 \\ v_3}=\colvec{v_1 \\ v_2 \\ v_3}
\end{equation*}
For condition~(5), given $\vec{v}\in\Re^3$, use $\vec{w}=-1\vec{v}$
as the additive inverse.
\begin{equation*}
\colvec{-v_1 \\ -v_2 \\ -v_3}+\colvec{v_1 \\ v_2 \\ v_3}=\colvec{0 \\ 0 \\ 0}
\end{equation*}
\end{frame}\begin{frame}
Condition~(6) is closure under scalar multiplication.
Let the scalar be $r\in\Re$ and the vector be $\vec{v}\in\Re^3$.
Then $r\vec{v}$ is a three-tall vector of reals, so $r\vec{v}\in\Re^3$.
\pause
Conditions~(7)
\begin{equation*}
(r+s)\colvec{v_1 \\ v_2 \\ v_3}
=\colvec{(r+s)v_1 \\ (r+s)v_2 \\ (r+s)v_3}
=\colvec{rv_1+sv_1 \\ rv_2+sv_2 \\ rv_3+sv_3}
=\colvec{rv_1 \\ rv_2 \\ rv_3}
+\colvec{sv_1 \\ sv_2 \\ sv_3}
=r\vec{v}+s\vec{v}
\end{equation*}
and~(8)
\begin{equation*}
r(\vec{v}+\vec{w})
=r(\colvec{v_1 \\ v_2 \\ v_3}+\colvec{w_1 \\ w_2 \\ w_3})
=r\colvec{v_1+w_1 \\ v_2+w_2 \\ v_3+w_3}
=\colvec{rv_1+rw_1 \\ rv_2+rw_2 \\ rv_3+rw_3}
% =\colvec{rv_1 \\ rv_2 \\ rv_3}
% +\colvec{rw_1 \\ rw_2 \\ rw_3}
=r\vec{v}+r\vec{w}
\end{equation*}
are straightforward.
\end{frame}\begin{frame}
Condition~(9) is similar.
\begin{equation*}
(rs)\colvec{v_1 \\ v_2 \\ v_3}
=\colvec{(rs)v_1 \\ (rs)v_2 \\ (rs)v_3}
=r\colvec{sv_1 \\ sv_2 \\ sv_3}
=r(s\vec{v})
\end{equation*}
And~(10) is also easy.
\begin{equation*}
1\vec{v}
=1\colvec{v_1 \\ v_2 \\ v_3}
=\colvec{1\cdot v_1 \\ 1\cdot v_2 \\ 1\cdot v_3}
=\colvec{v_1 \\ v_2 \\ v_3}
=\vec{v}
\end{equation*}
\pause\medskip
So the set $\Re^3$ is a vector space under the usual operations
of vector addition and scalar-vector multiplication.
\end{frame}
% ..........
\begin{frame}
\ex
This plane through the origin subset of $\Re^3$
\begin{equation*}
P=\set{\colvec{x \\ y \\ z} \suchthat 2x+y+3z=0}
\end{equation*}
is a vector space.
We will verify conditions~(1) and~(6)
(the others are exactly as in the prior example).
\pause
For (1) suppose that these are members of the plane
\begin{equation*}
\vec{p}_1=\colvec{x_1 \\ y_1 \\ z_1}
\quad
\vec{p}_2=\colvec{x_2 \\ y_2 \\ z_2}
\end{equation*}
so that both $2x_1+y_1+3z_1=0$ and $2x_2+y_2+3z_2=0$.
Then the sum is
\begin{equation*}
\vec{p}_1+\vec{p}_2=\colvec{x_1+x_2 \\ y_1+y_2 \\ z_1+z_2}
\end{equation*}
and to verify that it is in the plane note that
$2(x_1+x_2)+(y_1+y_2)+3(z_1+z_2)=(2x_1+y_1+3z_1)+(2x_2+y_2+3z_2)=0$.
\end{frame}\begin{frame}
\begin{center}
\includegraphics{asy/two_i_plane.pdf}
\end{center}
For condition~(6) take a member of the plane
\begin{equation*}
\vec{p}=\colvec{x_1 \\ y_1 \\ z_1}
\qquad \text{such that $2x_1+y_1+3z_1=0$}
\end{equation*}
and multiply by a scalar $r\in\Re$.
\begin{equation*}
r\vec{p}=\colvec{rx_1 \\ ry_1 \\ rz_1}
\end{equation*}
Verify that $r\vec{p}$ is a member of the plane~$P$ with
$2(rx_1)+(ry_1)+3(rz_1)=r(2x_1+y_1+3z_1)=0$.
\end{frame}
% ..........
\begin{frame}
\ex
The set
$\polyspace_2=\set{a_0+a_1x+a_2x^2 \suchthat a_0,a_1,a_2\in\Re}$
of quadratic polynomials
is a vector space under the usual operations of polynomial addition
\begin{equation*}
(a_0+a_1x+a_2x^2)+(b_0+b_1x+b_2x^2)=(a_0+b_0)+(a_1+b_1)x+(a_2+b_2)x^2
\end{equation*}
and scalar multiplication.
\begin{equation*}
r\cdot (a_0+a_1x+a_2x^2)=(ra_0)+(ra_1)x+(ra_2)x^2
\end{equation*}
We won't here check all the conditions but
in particular note that this space is closed:
a linear combination of quadratic polynomials
is a quadratic polynomial.
For instance, here is a sample combination in $\polyspace_2$:
\begin{equation*}
4\cdot(1+2x+3x^2)-(1/5)\cdot (10+5x^2)
=2+8x+11x^2
\end{equation*}
a linear combination of quadratic polynomials is a quadratic polynomial.
\end{frame}
\begin{frame}
\ex
The set of $\nbyn{3}$ matrices
\begin{equation*}
\matspace_{\nbyn{3}}=\set{\begin{mat}
a_{1,1} &a_{1,2} &a_{1,3} \\
a_{2,1} &a_{2,2} &a_{2,3} \\
a_{3,1} &a_{3,2} &a_{3,3}
\end{mat}
\suchthat a_{i,j}\in\Re}
\end{equation*}
is a vector space under the usual matrix addition and scalar multiplication.
The check of the ten conditions is straightforward.
Here is a sample linear combination.
\begin{equation*}
\begin{mat}
1 &0 &1 \\
2 &0 &2 \\
-1 &3 &1/2
\end{mat}
-3\begin{mat}
0 &0 &2 \\
1 &1 &1 \\
0 &4 &3/2
\end{mat}
=
\begin{mat}
1 &0 &-5 \\
-1 &-3 &1 \\
-1 &-9 &-4
\end{mat}
\end{equation*}
\end{frame}
\begin{frame}
The empty set cannot be made a vector space, regardless of which operations
we use, because the definition requires that the space contains
an additive identity.
\pause
\ex
The set consisting only of the two-tall zero vector
\begin{equation*}
V=\set{\colvec{0 \\ 0}}
\end{equation*}
is a vector space (under the usual vector addition and scalar multiplication
operations).
\begin{equation*}
\colvec{0 \\ 0}+\colvec{0 \\ 0}=\colvec{0 \\ 0}
\qquad
r\cdot\colvec{0 \\ 0}=\colvec{0 \\ 0}
\end{equation*}
\df[df:TrivialVectorSpace]
\ExecuteMetaData[../vs1.tex]{df:TrivialVectorSpace}
\end{frame}
% ..........
\begin{frame}
\lm[lm:ElementaryPropertiesOfVectorSpaces]
\ExecuteMetaData[../vs1.tex]{lm:ElementaryPropertiesOfVectorSpaces}
\pause
\pf
\ExecuteMetaData[../vs1.tex]{pf:ElementaryPropertiesOfVectorSpaces0}
\qed
\end{frame}
\section{Subspaces and spanning sets}
% ..........
\begin{frame}{Subspace}
\df[df:Subspace]
\ExecuteMetaData[../vs1.tex]{df:Subspace}
\pause\medskip
\ExecuteMetaData[../vs1.tex]{ProperSubspace}
\pause
\ex
In the vector space $\Re^2$, the line $y=2x$
\begin{equation*}
S=\set{\colvec{a \\ 2a} \suchthat a\in\Re}
=\set{\colvec{1 \\ 2}a \suchthat a\in\Re}
\end{equation*}
is a subspace.
The operations, as required by the definition above, are the ones from $\Re^2$.
We could show it is a vector space by checking the ten conditions
but the next result gives an easier way.
\pause
\ex
This subset of $\matspace_{\nbyn{2}}$ is a subspace.
\begin{equation*}
S=\set{\begin{mat}
a &b \\
a &b
\end{mat} \suchthat a,b\in\Re}
=\set{\begin{mat}
1 &0 \\
1 &0
\end{mat}a
+\begin{mat}
0 &1 \\
0 &1
\end{mat}b
\suchthat a,b\in\Re}
\end{equation*}
As above, addition and scalar multiplication are the same as in
$\matspace_{\nbyn{2}}$.
\end{frame}
% ..........
\begin{frame}
\ex
This is not a subspace of $\Re^3$.
\begin{equation*}
T=\set{\colvec{x \\ y \\ z}\suchthat x+y+z=1}
\end{equation*}
It is a subset of $\Re^3$ but it is not a vector space.
One condition that it violates is that it is not closed under vector addition:
here are two elements of $T$ that sum to a vector that is not an element of
$T$.
\begin{equation*}
\colvec{1 \\ 0 \\ 0}
+\colvec{0 \\ 1 \\ 0}
=\colvec{1 \\ 1 \\ 0}
\end{equation*}
(Another reason that it is not a vector space is that it does not satisfy
condition~(6).
Still another is that it does not contain the zero vector.)
\end{frame}
% ..........
\begin{frame}
\lm[th:SubspIffClosed]
\ExecuteMetaData[../vs1.tex]{lm:SubspIffClosed}
\pause\bigskip
\iftoggle{showallproofs}{
\ExecuteMetaData[../vs1.tex]{pf:SubspIffClosed0}
}{
The book has the full proof.
Its idea is that if $V$ is a vector space with a subset $S$
then many of the ten properties required for $S$ to be a
vector space are automatic.
For instance, suppose that
$\vec{s}_1,\vec{s}_2\in S$ and consider commutativity
of addition: does $\vec{s}_1+\vec{s}_2$ equal $\vec{s}_2+\vec{s}_1$?
\pause
Because the $+$ operation is inherited from $V$ and
as sums of elements of~$V$ the two are equal
$\vec{s}_1+\vec{s}_2=\vec{s}_2+\vec{s}_1$,
then provided $S$ is closed the two are equal in~$S$.
\pause
Many of the other nine conditions are also automatic.
The only ones that need to be checked are the closure conditions.
Both statements~(2) and~(3) above just combine the two closure conditions
into a single one, to make the subspace verification faster.
}
\end{frame}
\iftoggle{showallproofs}{
\begin{frame}
\pf[th:SubspIffClosed]
\ExecuteMetaData[../vs1.tex]{pf:SubspIffClosed1}
\pause
The conditions for scalar multiplication are similar.
\qed
\end{frame}
}{}
% ..........
\begin{frame}
\ex
The vector space of quadratic polynomials
$\polyspace_2=\set{a_0+a_1x+a_2x^2\suchthat a_0,a_1,a_2\in\Re}$ has a subspace
comprised of the linear polynomials
$L=\set{b_0+b_1x\suchthat b_0,b_1\in\Re}$.
By the prior result, to verify that we need only check
closure under linear combinations of two members.
\begin{equation*}
r(b_0+b_1x)+s(c_0+c_1x)=(rb_0+sc_0)+(rb_1+sc_1)x
\end{equation*}
The right side is a linear polynomial with real coefficients, and so is a
member of $L$.
Thus $L$ is a subspace of $\polyspace_2$.
\pause
\ex
Another subspace of $\polyspace_2$ is the set of quadratic polynomials
having three equal coefficients.
\begin{equation*}
M=\set{a+ax+ax^2\suchthat a\in\Re}
=\set{(1+x+x^2)a\suchthat a\in\Re}
\end{equation*}
Verify that it is a subspace by
considering a linear combination of two of its members
(under the inherited operations).
\begin{equation*}
r(a+ax+ax^2)+s(b+bx+bx^2)
=(ra+sb)+(ra+sb)x+(ra+sb)x^2
\end{equation*}
The result is a quadratic polynomial with three equal coefficients
and so $M$ is closed under linear combinations.
\end{frame}
% ..........
\begin{frame}
Each of the above examples of subspaces parametrizes the description.
\ex
This set is a plane inside of $\Re^3$.
\begin{equation*}
P=\set{\colvec{x \\ y \\ z}\suchthat 2x-y+z=0}
\end{equation*}
We could
verify that it is a subspace by checking that it is closed under
linear combination as above.
\pause
That's easier if we first parametrize the one-equation linear system
$2x-y+z=0$ using the free variables $y$ and~$z$.
\begin{equation*}
P=\set{\colvec{(1/2)y-(1/2)z \\ y \\ z}\suchthat y,z\in\Re}
=\set{\colvec{1/2 \\ 1 \\ 0}y+\colvec{-1/2 \\ 0 \\ 1 }z\suchthat y,z\in\Re}
\end{equation*}
\pause
Now we've described each member of $P$ as a linear combination of those two.
Verifying that $P$ is closed then involves taking a linear combination of
linear combinations, which gives a linear combination.
\end{frame}
% ..........
\begin{frame}{Span}
\df[df:Span]
\ExecuteMetaData[../vs1.tex]{df:Span}
\medskip
\ExecuteMetaData[../vs1.tex]{NotationForSpan}
\pause
\ex
Inside the vector space of all two-wide row vectors, the span of this
one-element set
\begin{equation*}
S=\set{\rowvec{1 &2}}
\end{equation*}
is this.
\begin{equation*}
\spanof{S}
=\set{\rowvec{a &2a}\suchthat a\in\Re}
=\set{\rowvec{1 &2}a\suchthat a\in\Re}
\end{equation*}
\end{frame}
% ..........
\begin{frame}
\ex
This is a subset of $\Re^3$.
\begin{equation*}
\hat{S}=\set{\colvec{1 \\ -1 \\ 0},
\colvec{1 \\ 1 \\ 0}}
\end{equation*}
Any vector in the $xy$-plane is a member of the span $\spanof{S}$ because
any such vector is a combination of the two;
for instance, this system has a solution
\begin{equation*}
\colvec{3 \\ 2 \\ 0}=\colvec{1 \\ -1 \\ 0}c_1
+\colvec{1 \\ 1 \\ 0}c_2
\end{equation*}
(the top two rows gives a linear system with a unique solution).
\pause
But vectors not in the $xy$-plane are not in the span.
For instance,
this system does not have a solution.
\begin{equation*}
\colvec{-1 \\ -2 \\ -3}=\colvec{1 \\ -1 \\ 0}c_1
+\colvec{1 \\ 1 \\ 0}c_2
\end{equation*}
\end{frame}
% ..........
\begin{frame}
\lm[le:SpanIsASubsp]
\ExecuteMetaData[../vs1.tex]{lm:SpanIsASubsp}
\pause
\pf
\ExecuteMetaData[../vs1.tex]{pf:SpanIsASubsp}
\qed
\end{frame}
\begin{frame}
\ex
We can illustrate that a span is closed under linear combinations.
Where
\begin{equation*}
\hat{S}=\set{\colvec{1 \\ -1 \\ 0},
\colvec{1 \\ 1 \\ 0}}\subset\Re^3
\end{equation*}
these are two elements of the span $\spanof{\hat{S}}$.
\begin{equation*}
\vec{v}_1=5\cdot\colvec{1 \\ -1 \\ 0}
+3\cdot\colvec{1 \\ 1 \\ 0}
\qquad
\vec{v}_2=-2\cdot\colvec{1 \\ -1 \\ 0}
+10\cdot\colvec{1 \\ 1 \\ 0}
\end{equation*}
The linear combination $-3\vec{v}_1+7\vec{v_2}$
makes another element of the span.
\begin{equation*}
-3\cdot\big( 5\colvec{1 \\ -1 \\ 0}
+3\colvec{1 \\ 1 \\ 0}\big)
+7\cdot\big(-2\colvec{1 \\ -1 \\ 0}
+10\colvec{1 \\ 1 \\ 0}\big)
=
-29\cdot\colvec{1 \\ -1 \\ 0}
+61\colvec{1 \\ 1 \\ 0}
\end{equation*}
This is just an instance of
the Linear Combination Lemma: a linear combination of
linear combinations is a linear combination.
\end{frame}
%...........................
% \begin{frame}
% \ExecuteMetaData[../gr3.tex]{GaussJordanReduction}
% \df[def:RedEchForm]
%
% \end{frame}
\end{document}