-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtwo_i_a.tex
360 lines (313 loc) · 9.37 KB
/
two_i_a.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
% see: https://groups.google.com/forum/?fromgroups#!topic/comp.text.tex/s6z9Ult_zds
\makeatletter\let\ifGm@compatii\relax\makeatother
\documentclass[10pt,t]{beamer}
\usefonttheme{professionalfonts}
\usefonttheme{serif}
\PassOptionsToPackage{pdfpagemode=FullScreen}{hyperref}
\PassOptionsToPackage{usenames,dvipsnames}{color}
% \DeclareGraphicsRule{*}{mps}{*}{}
\usepackage{../linalgjh}
\usepackage{present}
\usepackage{xr}\externaldocument{../vs1} % read refs from .aux file
\usepackage{catchfilebetweentags}
\usepackage{etoolbox} % from http://tex.stackexchange.com/questions/40699/input-only-part-of-a-file-using-catchfilebetweentags-package
\makeatletter
\patchcmd{\CatchFBT@Fin@l}{\endlinechar\m@ne}{}
{}{\typeout{Unsuccessful patch!}}
\makeatother
\mode<presentation>
{
\usetheme{boxes}
\setbeamercovered{invisible}
\setbeamertemplate{navigation symbols}{}
}
\addheadbox{filler}{\ } % create extra space at top of slide
\hypersetup{colorlinks=true,linkcolor=blue}
\title[Spaces and their subspaces] % (optional, use only with long paper titles)
{Spaces and their subspaces}
\author{\textit{Linear Algebra} \\ {\small Jim Hef{}feron}}
\institute{
\texttt{http://joshua.smcvt.edu/linearalgebra}
}
\date{}
\subject{Spaces and their subspaces}
% This is only inserted into the PDF information catalog. Can be left
% out.
\begin{document}
\begin{frame}
\titlepage
\end{frame}
% =============================================
% ..... Two.I.2.19 .....
\section{Real three-space}
\begin{frame}{Subspaces of $\Re^3$}
The next slide gives a sample of subspaces of the vector space~$\Re^3$:
the entire space, planes, lines, and the trivial subspace.
Subsets are drawn connected to their supersets on the levels
directly above and below.
(On the level one up from the bottom, the second
and third subspaces are lines because
the conjunction of the two conditions means that each is the
intersection of two planes.)
\end{frame}
\begin{frame}
{\centering\includegraphics{asy/r3_subspaces.pdf}}
\end{frame}
\begin{frame}{Express subspaces as spans}
\ex Consider the plane.
\begin{equation*}
P=\set{\colvec{x \\ y \\ z}\suchthat x+y+z=0}
\end{equation*}
Take the condition $x+y+z=0$ as a one-equation linear system
and parametrize.
\begin{equation*}
P=\set{\colvec{-y-z \\ y \\ z}\suchthat y,z\in\Re}
=\set{\colvec{-1 \\ 1 \\ 0}y+\colvec{-1 \\ 0 \\ 1}z\suchthat y,z\in\Re}
\end{equation*}
Thus the plane is this span.
\begin{equation*}
P=\spanof{\,\set{\colvec{-1 \\ 1 \\ 0},
\colvec{-1 \\ 0 \\ 1}}\,}
\end{equation*}
\end{frame}
\begin{frame}
This shows~$P$.
\begin{center}
\includegraphics{asy/two_i_a_plane.pdf}
\end{center}
The two vectors from the spanning set are in red.
For each, its body lies in the plane.
\end{frame}
\begin{frame}
\ex
For the plane
\begin{equation*}
\hat{P}=\set{\colvec{x \\ y \\ z}\suchthat x+2z=0}
\end{equation*}
repeat the process
\begin{equation*}
\hat{P}=\set{\colvec{-2z \\ y \\ z}\suchthat y,z\in\Re}
=\set{\colvec{0 \\ 1 \\ 0}y+\colvec{-2 \\ 0 \\ 1}z\suchthat y,z\in\Re}
\end{equation*}
to express it as a span.
\begin{equation*}
\hat{P}=\spanof{\,\set{\colvec{0 \\ 1 \\ 0},
\colvec{-2 \\ 0 \\ 1}}\,}
\end{equation*}
\pause
\ex
The $xy$-plane is a span in a natural way.
\begin{equation*}
\text{$xy$~plane}=\spanof{\,\set{\colvec{1 \\ 0 \\ 0},
\colvec{0 \\ 1 \\ 0}}\,}
\end{equation*}
\end{frame}
\begin{frame}
\ex
Next, parametrize the lines.
The conditions in the set description
\begin{equation*}
L=\set{\colvec{x \\ y \\ z}\suchthat \text{$x-y+z=0$ and $x+2z=0$}}
\end{equation*}
make a linear system.
\begin{equation*}
\begin{linsys}{3}
x &- &y &+ &z &= &0 \\
x & & &+ &2z &= &0
\end{linsys}
\grstep{-\rho_1+\rho_2}
\begin{linsys}{3}
x &- &y &+ &z &= &0 \\
& &y &+ &z &= &0
\end{linsys}
\end{equation*}
Parametrizing
\begin{equation*}
L=\set{\colvec{x \\ y \\ z}\suchthat \text{$y=-z$ and $x=-2z$}}
\end{equation*}
gives this.
\begin{equation*}
L=\set{\colvec{-2 \\ -1 \\ 1}z\suchthat z\in\Re}
=\spanof{\,\set{\colvec{-2 \\ -1 \\ 1}}\,}
\end{equation*}
\end{frame}
\begin{frame}
Here is the line, drawn with the same view as the earlier plane.
\begin{center}
\includegraphics{asy/two_i_a_line.pdf}
\end{center}
In red is the spanning vector
\begin{equation*}
\colvec{-2 \\ -1 \\ 1}
\end{equation*}
(its endpoint lies behind the plane of the screen).
\end{frame}
\begin{frame}
\ex
The line
\begin{equation*}
\hat{L}=\set{\colvec{x \\ y \\ z}\suchthat \text{$y=2x$ and $z=0$}}
\end{equation*}
is easy to describe in a parametrized way.
\begin{align*}
\hat{L}
&=\set{\colvec{1/2 \\ 1 \\ 0}y\suchthat y\in\Re} \\
&=\spanof{\,\set{\colvec{1/2 \\ 1 \\ 0}}\,}
\end{align*}
\pause
\ex
The $y$-axis is also easy to describe as a span.
\begin{equation*}
\text{$y$-axis}
=\spanof{\,\set{\colvec{0 \\ 1 \\ 0}}\,}
\end{equation*}
\end{frame}
\begin{frame}
\ex
We can describe the entire space as a span.
\begin{equation*}
\Re^3=\spanof{\,\set{\colvec{1 \\ 0 \\ 0},
\colvec{0 \\ 1 \\ 0},
\colvec{0 \\ 0 \\ 1}}\,}
\end{equation*}
\pause
\ex
We can do the same for the trivial subspace.
\begin{equation*}
\set{\colvec{0 \\ 0 \\ 0}}
=\spanof{\,\set{}\,}
\end{equation*}
(Remember the convention that a sum of zero-many members of $\Re^n$
is the zero vector.)
\end{frame}
\begin{frame}{$\Re^3$'s diagram reprised}
The following slide repeats the diagram of $\Re^3$'s subspaces,
showing the same subspaces.
On this diagram those subspaces they are described as spans,
where the spanning set uses a minimal number of vectors.
By `minimal' we mean something like:~while
we could describe the $xy$-plane in either of these ways,
\begin{equation*}
\text{$xy$-plane}
=\spanof{\,\set{\colvec{1 \\ 0 \\ 0},
\colvec{0 \\ 1 \\ 0}}\,}
=\spanof{\,\set{\colvec{1 \\ 0 \\ 0},
\colvec{0 \\ 1 \\ 0},
\colvec{2 \\ -1 \\ 0}}\,}
\end{equation*}
the second has an extra vector, so the next slide doesn't use that description.
(We will soon make this precise.)
% \pause\medskip
% Note that
% the subspaces fall naturally into levels,
% depending on how many vectors are in a minimal spanning set.
\end{frame}
\begin{frame}
{\centering\includegraphics{asy/r3_subspaces_spans.pdf}}
\end{frame}
%...........................
\section{The space of quadratic polynomials}
\begin{frame}{$\polyspace_2$'s subspaces}
The next slide has a picture of some of the subspaces of the
space of quadratic polynomials.
As with the $\Re^3$ diagram,
subsets are shown connected to supersets on the level above.
With $\Re^3$ the geometry gave us a good start for a natural classification
of subspaces into planes, lines, etc.
In this space there is less of that sense.
But there are a couple of natural subspaces.
\begin{align*}
\text{linears}
&=\set{0x^2+bx+c\suchthat b,c\in\Re} \\
\text{constants}
&=\set{0x^2+0x+c\suchthat c\in\Re}
\end{align*}
These are on the next slide
(which is why they have abbreviated names here, to fit in the layout),
along with a couple of more generic spaces.
\end{frame}
\begin{frame}
{\centering\includegraphics{asy/p2_subspaces.pdf}}
\end{frame}
\begin{frame}{Parametrizing}
\ex
For the top line, this will do.
\begin{equation*}
\polyspace_2
=\spanof{\,\set{x^2,x,1}\,}
=\spanof{\,\set{x^2+0x+0,
0x^2+x+0,
0x^2+0x+1}\,}
\end{equation*}
\ex
The trivial subspace is the span of the empty set.
\begin{equation*}
\set{0}
=\set{0x^2+0x+0}
=\spanof{\,\set{}\,}
\end{equation*}
\pause
\ex
The set of linear polynomials has a natural expression as a span.
\begin{equation*}
\text{linears}
=\set{bx+c\suchthat b,c\in\Re}
=\spanof{\,\set{x,1}\,}
\end{equation*}
\ex
The set of constant polynomials is similar.
\begin{equation*}
\text{constants}
=\set{0x^2+0x+c\suchthat c\in\Re}
=\spanof{\,\set{1}\,}
\end{equation*}
\end{frame}
\begin{frame}
\ex
Paramatrize $P=\set{ax^2+bx+c\suchthat a+b+c=0}$
in much the same way as for subspaces of real three-space.
\begin{align*}
% \set{ax^2+bx+c\suchthat a+b+c=0}
P
&=\set{ax^2+bx+c\suchthat a=-b-c} \\
&=\set{(-b-c)\cdot x^2+bx+c\suchthat b,c\in\Re} \\
&=\set{(-x^2+x)\cdot b+(-x^2+1)\cdot c\suchthat b,c\in\Re}
\end{align*}
The spanning set is $\set{-x^2+x, -x^2+1}$.
\pause
\ex
Simliarly for
$\hat{P}=\set{ax^2+bx+c\suchthat \text{$a-c=0$ and $b-c=0$}}$.
\begin{align*}
\hat{P}
&=\set{ax^2+bx+c\suchthat \text{$a=c$ and $b=c$}} \\
&=\set{cx^2+cx+c\suchthat c\in\Re} \\
&=\set{(x^2+x+1)\cdot c \suchthat c\in\Re}
\end{align*}
The spanning set is $\set{x^2+x+1}$.
\pause\medskip
The next slide reprises $\polyspace_2$'s diagram,
with the subspaces described as spans.
\end{frame}
\begin{frame}
{\centering\includegraphics{asy/p2_subspaces_spans.pdf}}
\end{frame}
\section{Putting the examples together}
\begin{frame}
\frametitle{Summary}
Subspaces are naturally described as spans.
In both examples these spans fall naturally into levels,
according to the
number of elements in a minimal spanning set.
The book's next section gives a precise definition of
when a spanning set is `minimal'.
The section after that shows that for any space,
two minimal spanning sets have the same number of vectors.
\end{frame}
%...........................
% \begin{frame}
% \ExecuteMetaData[../gr3.tex]{GaussJordanReduction}
% \df[def:RedEchForm]
%
% \end{frame}
\end{document}