forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_dics.py
651 lines (549 loc) · 21.4 KB
/
_dics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
"""Dynamic Imaging of Coherent Sources (DICS)."""
# Authors: Marijn van Vliet <[email protected]>
# Britta Westner <[email protected]>
# Susanna Aro <[email protected]>
# Roman Goj <[email protected]>
#
# License: BSD-3-Clause
import numpy as np
from ..channels import equalize_channels
from ..io.pick import pick_info, pick_channels
from ..utils import (
logger,
verbose,
_check_one_ch_type,
_check_channels_spatial_filter,
_check_rank,
_check_option,
_validate_type,
warn,
)
from ..forward import _subject_from_forward
from ..minimum_norm.inverse import combine_xyz, _check_reference, _check_depth
from ..rank import compute_rank
from ..source_estimate import _make_stc, _get_src_type
from ..time_frequency import EpochsTFR
from ..time_frequency.tfr import _check_tfr_complex
from ._compute_beamformer import (
_prepare_beamformer_input,
_compute_beamformer,
_check_src_type,
Beamformer,
_compute_power,
_proj_whiten_data,
)
@verbose
def make_dics(
info,
forward,
csd,
reg=0.05,
noise_csd=None,
label=None,
pick_ori=None,
rank=None,
weight_norm=None,
reduce_rank=False,
depth=1.0,
real_filter=True,
inversion="matrix",
verbose=None,
):
"""Compute a Dynamic Imaging of Coherent Sources (DICS) spatial filter.
This is a beamformer filter that can be used to estimate the source power
at a specific frequency range :footcite:`GrossEtAl2001`. It does this by
constructing a spatial filter for each source point.
The computation of these filters is very similar to those of the LCMV
beamformer (:func:`make_lcmv`), but instead of operating on a covariance
matrix, the CSD matrix is used. When applying these filters to a CSD matrix
(see :func:`apply_dics_csd`), the source power can be estimated for each
source point.
Parameters
----------
%(info_not_none)s
forward : instance of Forward
Forward operator.
csd : instance of CrossSpectralDensity
The data cross-spectral density (CSD) matrices. A source estimate is
performed for each frequency or frequency-bin defined in the CSD
object.
reg : float
The regularization to apply to the cross-spectral density before
computing the inverse.
noise_csd : instance of CrossSpectralDensity | None
Noise cross-spectral density (CSD) matrices. If provided, whitening
will be done. The noise CSDs need to have been computed for the same
frequencies as the data CSDs. Providing noise CSDs is mandatory if you
mix sensor types, e.g. gradiometers with magnetometers or EEG with
MEG.
.. versionadded:: 0.20
label : Label | None
Restricts the solution to a given label.
%(pick_ori_bf)s
%(rank_none)s
.. versionadded:: 0.17
%(weight_norm)s
Defaults to ``None``, in which case no normalization is performed.
%(reduce_rank)s
%(depth)s
real_filter : bool
If ``True``, take only the real part of the cross-spectral-density
matrices to compute real filters.
.. versionchanged:: 0.23
Version 0.23 an earlier used ``real_filter=False`` as the default,
as of version 0.24 ``True`` is the default.
%(inversion_bf)s
.. versionchanged:: 0.21
Default changed to ``'matrix'``.
%(verbose)s
Returns
-------
filters : instance of Beamformer
Dictionary containing filter weights from DICS beamformer.
Contains the following keys:
'kind' : str
The type of beamformer, in this case 'DICS'.
'weights' : ndarray, shape (n_frequencies, n_weights)
For each frequency, the filter weights of the beamformer.
'csd' : instance of CrossSpectralDensity
The data cross-spectral density matrices used to compute the
beamformer.
'ch_names' : list of str
Channels used to compute the beamformer.
'proj' : ndarray, shape (n_channels, n_channels)
Projections used to compute the beamformer.
'vertices' : list of ndarray
Vertices for which the filter weights were computed.
'n_sources' : int
Number of source location for which the filter weight were
computed.
'subject' : str
The subject ID.
'pick-ori' : None | 'max-power' | 'normal' | 'vector'
The orientation in which the beamformer filters were computed.
'inversion' : 'single' | 'matrix'
Whether the spatial filters were computed for each dipole
separately or jointly for all dipoles at each vertex using a
matrix inversion.
'weight_norm' : None | 'unit-noise-gain'
The normalization of the weights.
'src_type' : str
Type of source space.
'source_nn' : ndarray, shape (n_sources, 3)
For each source location, the surface normal.
'is_free_ori' : bool
Whether the filter was computed in a fixed direction
(pick_ori='max-power', pick_ori='normal') or not.
'whitener' : None | ndarray, shape (n_channels, n_channels)
Whitening matrix, provided if whitening was applied to the
covariance matrix and leadfield during computation of the
beamformer weights.
'max-power-ori' : ndarray, shape (n_sources, 3) | None
When pick_ori='max-power', this fields contains the estimated
direction of maximum power at each source location.
See Also
--------
apply_dics_csd
Notes
-----
The original reference is :footcite:`GrossEtAl2001`. See
:footcite:`vanVlietEtAl2018` for a tutorial style paper on the topic.
The DICS beamformer is very similar to the LCMV (:func:`make_lcmv`)
beamformer and many of the parameters are shared. However,
:func:`make_dics` and :func:`make_lcmv` currently have different defaults
for these parameters, which were settled on separately through extensive
practical use case testing (but not necessarily exhaustive parameter space
searching), and it remains to be seen how functionally interchangeable they
could be.
The default setting reproduce the DICS beamformer as described in
:footcite:`vanVlietEtAl2018`::
inversion='single', weight_norm=None, depth=1.
To use the :func:`make_lcmv` defaults, use::
inversion='matrix', weight_norm='unit-noise-gain-invariant', depth=None
For more information about ``real_filter``, see the
supplemental information from :footcite:`HippEtAl2011`.
References
----------
.. footbibliography::
""" # noqa: E501
rank = _check_rank(rank)
_check_option("pick_ori", pick_ori, [None, "vector", "normal", "max-power"])
_check_option("inversion", inversion, ["single", "matrix"])
_validate_type(weight_norm, (str, None), "weight_norm")
frequencies = [np.mean(freq_bin) for freq_bin in csd.frequencies]
n_freqs = len(frequencies)
_, _, allow_mismatch = _check_one_ch_type("dics", info, forward, csd, noise_csd)
# remove bads so that equalize_channels only keeps all good
info = pick_info(info, pick_channels(info["ch_names"], [], info["bads"]))
info, forward, csd = equalize_channels([info, forward, csd])
csd, noise_csd = _prepare_noise_csd(csd, noise_csd, real_filter)
depth = _check_depth(depth, "depth_sparse")
if inversion == "single":
depth["combine_xyz"] = False
(
is_free_ori,
info,
proj,
vertices,
G,
whitener,
nn,
orient_std,
) = _prepare_beamformer_input(
info,
forward,
label,
pick_ori,
noise_cov=noise_csd,
rank=rank,
pca=False,
**depth,
)
# Compute ranks
csd_int_rank = []
if not allow_mismatch:
noise_rank = compute_rank(noise_csd, info=info, rank=rank)
for i in range(len(frequencies)):
csd_rank = compute_rank(
csd.get_data(index=i, as_cov=True), info=info, rank=rank
)
if not allow_mismatch:
for key in csd_rank:
if key not in noise_rank or csd_rank[key] != noise_rank[key]:
raise ValueError(
"%s data rank (%s) did not match the "
"noise rank (%s)"
% (key, csd_rank[key], noise_rank.get(key, None))
)
csd_int_rank.append(sum(csd_rank.values()))
del noise_csd
ch_names = list(info["ch_names"])
logger.info("Computing DICS spatial filters...")
Ws = []
max_oris = []
for i, freq in enumerate(frequencies):
if n_freqs > 1:
logger.info(
" computing DICS spatial filter at "
f"{round(freq, 2)} Hz ({i + 1}/{n_freqs})"
)
Cm = csd.get_data(index=i)
# XXX: Weird that real_filter happens *before* whitening, which could
# make things complex again...?
if real_filter:
Cm = Cm.real
# compute spatial filter
n_orient = 3 if is_free_ori else 1
W, max_power_ori = _compute_beamformer(
G,
Cm,
reg,
n_orient,
weight_norm,
pick_ori,
reduce_rank,
rank=csd_int_rank[i],
inversion=inversion,
nn=nn,
orient_std=orient_std,
whitener=whitener,
)
Ws.append(W)
max_oris.append(max_power_ori)
Ws = np.array(Ws)
if pick_ori == "max-power":
max_oris = np.array(max_oris)
else:
max_oris = None
src_type = _get_src_type(forward["src"], vertices)
subject = _subject_from_forward(forward)
is_free_ori = is_free_ori if pick_ori in [None, "vector"] else False
n_sources = np.sum([len(v) for v in vertices])
filters = Beamformer(
kind="DICS",
weights=Ws,
csd=csd,
ch_names=ch_names,
proj=proj,
vertices=vertices,
n_sources=n_sources,
subject=subject,
pick_ori=pick_ori,
inversion=inversion,
weight_norm=weight_norm,
src_type=src_type,
source_nn=forward["source_nn"].copy(),
is_free_ori=is_free_ori,
whitener=whitener,
max_power_ori=max_oris,
)
return filters
def _prepare_noise_csd(csd, noise_csd, real_filter):
if noise_csd is not None:
csd, noise_csd = equalize_channels([csd, noise_csd])
# Use the same noise CSD for all frequencies
if len(noise_csd.frequencies) > 1:
noise_csd = noise_csd.mean()
noise_csd = noise_csd.get_data(as_cov=True)
if real_filter:
noise_csd["data"] = noise_csd["data"].real
return csd, noise_csd
def _apply_dics(data, filters, info, tmin, tfr=False):
"""Apply DICS spatial filter to data for source reconstruction."""
if isinstance(data, np.ndarray) and data.ndim == (2 + tfr):
data = [data]
one_epoch = True
else:
one_epoch = False
Ws = filters["weights"]
one_freq = len(Ws) == 1
subject = filters["subject"]
# compatibility with 0.16, add src_type as None if not present:
filters, warn_text = _check_src_type(filters)
for i, M in enumerate(data):
if not one_epoch:
logger.info("Processing epoch : %d" % (i + 1))
# Apply SSPs
if not tfr: # save computation, only compute once
M_w = _proj_whiten_data(M, info["projs"], filters)
stcs = []
for j, W in enumerate(Ws):
if tfr: # must compute for each frequency
M_w = _proj_whiten_data(M[:, j], info["projs"], filters)
# project to source space using beamformer weights
sol = np.dot(W, M_w)
if filters["is_free_ori"] and filters["pick_ori"] != "vector":
logger.info("combining the current components...")
sol = combine_xyz(sol)
tstep = 1.0 / info["sfreq"]
stcs.append(
_make_stc(
sol,
vertices=filters["vertices"],
src_type=filters["src_type"],
tmin=tmin,
tstep=tstep,
subject=subject,
vector=(filters["pick_ori"] == "vector"),
source_nn=filters["source_nn"],
warn_text=warn_text,
)
)
if one_freq:
yield stcs[0]
else:
yield stcs
logger.info("[done]")
@verbose
def apply_dics(evoked, filters, verbose=None):
"""Apply Dynamic Imaging of Coherent Sources (DICS) beamformer weights.
Apply Dynamic Imaging of Coherent Sources (DICS) beamformer weights
on evoked data.
.. warning:: The result of this function is meant as an intermediate step
for further processing (such as computing connectivity). If
you are interested in estimating source time courses, use an
LCMV beamformer (:func:`make_lcmv`, :func:`apply_lcmv`)
instead. If you are interested in estimating spectral power at
the source level, use :func:`apply_dics_csd`.
.. warning:: This implementation has not been heavily tested so please
report any issues or suggestions.
Parameters
----------
evoked : Evoked
Evoked data to apply the DICS beamformer weights to.
filters : instance of Beamformer
DICS spatial filter (beamformer weights)
Filter weights returned from :func:`make_dics`.
%(verbose)s
Returns
-------
stc : SourceEstimate | VolSourceEstimate | list
Source time courses. If the DICS beamformer has been computed for more
than one frequency, a list is returned containing for each frequency
the corresponding time courses.
See Also
--------
apply_dics_epochs
apply_dics_tfr_epochs
apply_dics_csd
""" # noqa: E501
_check_reference(evoked)
info = evoked.info
data = evoked.data
tmin = evoked.times[0]
sel = _check_channels_spatial_filter(evoked.ch_names, filters)
data = data[sel]
stc = _apply_dics(data=data, filters=filters, info=info, tmin=tmin)
return next(stc)
@verbose
def apply_dics_epochs(epochs, filters, return_generator=False, verbose=None):
"""Apply Dynamic Imaging of Coherent Sources (DICS) beamformer weights.
Apply Dynamic Imaging of Coherent Sources (DICS) beamformer weights
on single trial data.
.. warning:: The result of this function is meant as an intermediate step
for further processing (such as computing connectivity). If
you are interested in estimating source time courses, use an
LCMV beamformer (:func:`make_lcmv`, :func:`apply_lcmv`)
instead. If you are interested in estimating spectral power at
the source level, use :func:`apply_dics_csd`.
.. warning:: This implementation has not been heavily tested so please
report any issue or suggestions.
Parameters
----------
epochs : Epochs
Single trial epochs.
filters : instance of Beamformer
DICS spatial filter (beamformer weights)
Filter weights returned from :func:`make_dics`. The DICS filters must
have been computed for a single frequency only.
return_generator : bool
Return a generator object instead of a list. This allows iterating
over the stcs without having to keep them all in memory.
%(verbose)s
Returns
-------
stc: list | generator of (SourceEstimate | VolSourceEstimate)
The source estimates for all epochs.
See Also
--------
apply_dics
apply_dics_tfr_epochs
apply_dics_csd
"""
_check_reference(epochs)
if len(filters["weights"]) > 1:
raise ValueError(
"This function only works on DICS beamformer weights that have "
"been computed for a single frequency. When calling make_dics(), "
"make sure to use a CSD object with only a single frequency (or "
"frequency-bin) defined."
)
info = epochs.info
tmin = epochs.times[0]
sel = _check_channels_spatial_filter(epochs.ch_names, filters)
data = epochs.get_data()[:, sel, :]
stcs = _apply_dics(data=data, filters=filters, info=info, tmin=tmin)
if not return_generator:
stcs = list(stcs)
return stcs
@verbose
def apply_dics_tfr_epochs(epochs_tfr, filters, return_generator=False, verbose=None):
"""Apply Dynamic Imaging of Coherent Sources (DICS) beamformer weights.
Apply Dynamic Imaging of Coherent Sources (DICS) beamformer weights
on single trial time-frequency data.
Parameters
----------
epochs_tfr : EpochsTFR
Single trial time-frequency epochs.
filters : instance of Beamformer
DICS spatial filter (beamformer weights)
Filter weights returned from :func:`make_dics`.
return_generator : bool
Return a generator object instead of a list. This allows iterating
over the stcs without having to keep them all in memory.
%(verbose)s
Returns
-------
stcs : list of list of (SourceEstimate | VectorSourceEstimate | VolSourceEstimate)
The source estimates for all epochs (outside list) and for
all frequencies (inside list).
See Also
--------
apply_dics
apply_dics_epochs
apply_dics_csd
""" # noqa E501
_validate_type(epochs_tfr, EpochsTFR)
_check_tfr_complex(epochs_tfr)
if filters["pick_ori"] == "vector":
warn(
"Using a vector solution to compute power will lead to "
"inaccurate directions (only in the first quadrent) "
"because power is a strictly positive (squared) metric. "
"Using singular value decomposition (SVD) to determine "
"the direction is not yet supported in MNE."
)
sel = _check_channels_spatial_filter(epochs_tfr.ch_names, filters)
data = epochs_tfr.data[:, sel, :, :]
stcs = _apply_dics(data, filters, epochs_tfr.info, epochs_tfr.tmin, tfr=True)
if not return_generator:
stcs = [[stc for stc in tfr_stcs] for tfr_stcs in stcs]
return stcs
@verbose
def apply_dics_csd(csd, filters, verbose=None):
"""Apply Dynamic Imaging of Coherent Sources (DICS) beamformer weights.
Apply a previously computed DICS beamformer to a cross-spectral density
(CSD) object to estimate source power in time and frequency windows
specified in the CSD object :footcite:`GrossEtAl2001`.
.. note:: Only power can computed from the cross-spectral density, not
complex phase-amplitude, so vector DICS filters will be
converted to scalar source estimates since power is strictly
positive and so 3D directions cannot be combined meaningfully
(the direction would be confined to the positive quadrant).
Parameters
----------
csd : instance of CrossSpectralDensity
The data cross-spectral density (CSD) matrices. A source estimate is
performed for each frequency or frequency-bin defined in the CSD
object.
filters : instance of Beamformer
DICS spatial filter (beamformer weights)
Filter weights returned from `make_dics`.
%(verbose)s
Returns
-------
stc : SourceEstimate
Source power with frequency instead of time.
frequencies : list of float
The frequencies for which the source power has been computed. If the
data CSD object defines frequency-bins instead of exact frequencies,
the mean of each bin is returned.
See Also
--------
apply_dics
apply_dics_epochs
apply_dics_tfr_epochs
References
----------
.. footbibliography::
""" # noqa: E501
ch_names = filters["ch_names"]
vertices = filters["vertices"]
n_orient = 3 if filters["is_free_ori"] else 1
subject = filters["subject"]
whitener = filters["whitener"]
n_sources = filters["n_sources"]
# If CSD is summed over multiple frequencies, take the average frequency
frequencies = [np.mean(dfreq) for dfreq in csd.frequencies]
n_freqs = len(frequencies)
source_power = np.zeros((n_sources, len(csd.frequencies)))
# Ensure the CSD is in the same order as the weights
csd_picks = [csd.ch_names.index(ch) for ch in ch_names]
logger.info("Computing DICS source power...")
for i, freq in enumerate(frequencies):
if n_freqs > 1:
logger.info(
" applying DICS spatial filter at "
f"{round(freq, 2)} Hz ({i + 1}/{n_freqs})"
)
Cm = csd.get_data(index=i)
Cm = Cm[csd_picks, :][:, csd_picks]
W = filters["weights"][i]
# Whiten the CSD
Cm = np.dot(whitener, np.dot(Cm, whitener.conj().T))
source_power[:, i] = _compute_power(Cm, W, n_orient)
logger.info("[done]")
# compatibility with 0.16, add src_type as None if not present:
filters, warn_text = _check_src_type(filters)
return (
_make_stc(
source_power,
vertices=vertices,
src_type=filters["src_type"],
tmin=0.0,
tstep=1.0,
subject=subject,
warn_text=warn_text,
),
frequencies,
)