forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_rap_music.py
320 lines (271 loc) · 9.82 KB
/
_rap_music.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
"""Compute a Recursively Applied and Projected MUltiple Signal Classification (RAP-MUSIC).""" # noqa
# Authors: Yousra Bekhti <[email protected]>
# Alexandre Gramfort <[email protected]>
#
# License: BSD-3-Clause
import numpy as np
from ..forward import is_fixed_orient, convert_forward_solution
from ..io.pick import pick_info, pick_channels_forward
from ..inverse_sparse.mxne_inverse import _make_dipoles_sparse
from ..minimum_norm.inverse import _log_exp_var
from ..utils import logger, verbose, _check_info_inv, fill_doc
from ._compute_beamformer import _prepare_beamformer_input
@fill_doc
def _apply_rap_music(
data, info, times, forward, noise_cov, n_dipoles=2, picks=None, use_trap=False
):
"""RAP-MUSIC or TRAP-MUSIC for evoked data.
Parameters
----------
data : array, shape (n_channels, n_times)
Evoked data.
%(info_not_none)s
times : array
Times.
forward : instance of Forward
Forward operator.
noise_cov : instance of Covariance
The noise covariance.
n_dipoles : int
The number of dipoles to estimate. The default value is 2.
picks : list of int
Caller ensures this is a list of int.
use_trap : bool
Use the TRAP-MUSIC variant if True (default False).
Returns
-------
dipoles : list of instances of Dipole
The dipole fits.
explained_data : array | None
Data explained by the dipoles using a least square fitting with the
selected active dipoles and their estimated orientation.
"""
from scipy import linalg
info = pick_info(info, picks)
del picks
# things are much simpler if we avoid surface orientation
align = forward["source_nn"].copy()
if forward["surf_ori"] and not is_fixed_orient(forward):
forward = convert_forward_solution(forward, surf_ori=False)
is_free_ori, info, _, _, G, whitener, _, _ = _prepare_beamformer_input(
info, forward, noise_cov=noise_cov, rank=None
)
forward = pick_channels_forward(forward, info["ch_names"], ordered=True)
del info
# whiten the data (leadfield already whitened)
M = np.dot(whitener, data)
del data
_, eig_vectors = linalg.eigh(np.dot(M, M.T))
phi_sig = eig_vectors[:, -n_dipoles:]
n_orient = 3 if is_free_ori else 1
G.shape = (G.shape[0], -1, n_orient)
gain = forward["sol"]["data"].copy()
gain.shape = G.shape
n_channels = G.shape[0]
A = np.empty((n_channels, n_dipoles))
gain_dip = np.empty((n_channels, n_dipoles))
oris = np.empty((n_dipoles, 3))
poss = np.empty((n_dipoles, 3))
G_proj = G.copy()
phi_sig_proj = phi_sig.copy()
idxs = list()
for k in range(n_dipoles):
subcorr_max = -1.0
source_idx, source_ori, source_pos = 0, [0, 0, 0], [0, 0, 0]
for i_source in range(G.shape[1]):
Gk = G_proj[:, i_source]
subcorr, ori = _compute_subcorr(Gk, phi_sig_proj)
if subcorr > subcorr_max:
subcorr_max = subcorr
source_idx = i_source
source_ori = ori
source_pos = forward["source_rr"][i_source]
if n_orient == 3 and align is not None:
surf_normal = forward["source_nn"][3 * i_source + 2]
# make sure ori is aligned to the surface orientation
source_ori *= np.sign(source_ori @ surf_normal) or 1.0
if n_orient == 1:
source_ori = forward["source_nn"][i_source]
idxs.append(source_idx)
if n_orient == 3:
Ak = np.dot(G[:, source_idx], source_ori)
else:
Ak = G[:, source_idx, 0]
A[:, k] = Ak
oris[k] = source_ori
poss[k] = source_pos
logger.info("source %s found: p = %s" % (k + 1, source_idx))
if n_orient == 3:
logger.info("ori = %s %s %s" % tuple(oris[k]))
projection = _compute_proj(A[:, : k + 1])
G_proj = np.einsum("ab,bso->aso", projection, G)
phi_sig_proj = np.dot(projection, phi_sig)
if use_trap:
phi_sig_proj = phi_sig_proj[:, -(n_dipoles - k) :]
del G, G_proj
sol = linalg.lstsq(A, M)[0]
if n_orient == 3:
X = sol[:, np.newaxis] * oris[:, :, np.newaxis]
X.shape = (-1, len(times))
else:
X = sol
gain_active = gain[:, idxs]
if n_orient == 3:
gain_dip = (oris * gain_active).sum(-1)
idxs = np.array(idxs)
active_set = np.array([[3 * idxs, 3 * idxs + 1, 3 * idxs + 2]]).T.ravel()
else:
gain_dip = gain_active[:, :, 0]
active_set = idxs
gain_active = whitener @ gain_active.reshape(gain.shape[0], -1)
assert gain_active.shape == (n_channels, X.shape[0])
explained_data = gain_dip @ sol
M_estimate = whitener @ explained_data
_log_exp_var(M, M_estimate)
tstep = np.median(np.diff(times)) if len(times) > 1 else 1.0
dipoles = _make_dipoles_sparse(
X, active_set, forward, times[0], tstep, M, gain_active, active_is_idx=True
)
for dipole, ori in zip(dipoles, oris):
signs = np.sign((dipole.ori * ori).sum(-1, keepdims=True))
dipole.ori *= signs
dipole.amplitude *= signs[:, 0]
logger.info("[done]")
return dipoles, explained_data
def _compute_subcorr(G, phi_sig):
"""Compute the subspace correlation."""
from scipy import linalg
Ug, Sg, Vg = linalg.svd(G, full_matrices=False)
# Now we look at the actual rank of the forward fields
# in G and handle the fact that it might be rank defficient
# eg. when using MEG and a sphere model for which the
# radial component will be truly 0.
rank = np.sum(Sg > (Sg[0] * 1e-6))
if rank == 0:
return 0, np.zeros(len(G))
rank = max(rank, 2) # rank cannot be 1
Ug, Sg, Vg = Ug[:, :rank], Sg[:rank], Vg[:rank]
tmp = np.dot(Ug.T.conjugate(), phi_sig)
Uc, Sc, _ = linalg.svd(tmp, full_matrices=False)
X = np.dot(Vg.T / Sg[None, :], Uc[:, 0]) # subcorr
return Sc[0], X / np.linalg.norm(X)
def _compute_proj(A):
"""Compute the orthogonal projection operation for a manifold vector A."""
from scipy import linalg
U, _, _ = linalg.svd(A, full_matrices=False)
return np.identity(A.shape[0]) - np.dot(U, U.T.conjugate())
def _rap_music(evoked, forward, noise_cov, n_dipoles, return_residual, use_trap):
"""RAP-/TRAP-MUSIC implementation."""
info = evoked.info
data = evoked.data
times = evoked.times
picks = _check_info_inv(info, forward, data_cov=None, noise_cov=noise_cov)
data = data[picks]
dipoles, explained_data = _apply_rap_music(
data, info, times, forward, noise_cov, n_dipoles, picks, use_trap
)
if return_residual:
residual = evoked.copy().pick([info["ch_names"][p] for p in picks])
residual.data -= explained_data
active_projs = [p for p in residual.info["projs"] if p["active"]]
for p in active_projs:
p["active"] = False
residual.add_proj(active_projs, remove_existing=True)
residual.apply_proj()
return dipoles, residual
else:
return dipoles
@verbose
def rap_music(
evoked,
forward,
noise_cov,
n_dipoles=5,
return_residual=False,
*,
verbose=None,
):
"""RAP-MUSIC source localization method.
Compute Recursively Applied and Projected MUltiple SIgnal Classification
(RAP-MUSIC) :footcite:`MosherLeahy1999,MosherLeahy1996` on evoked data.
.. note:: The goodness of fit (GOF) of all the returned dipoles is the
same and corresponds to the GOF of the full set of dipoles.
Parameters
----------
evoked : instance of Evoked
Evoked data to localize.
forward : instance of Forward
Forward operator.
noise_cov : instance of Covariance
The noise covariance.
n_dipoles : int
The number of dipoles to look for. The default value is 5.
return_residual : bool
If True, the residual is returned as an Evoked instance.
%(verbose)s
Returns
-------
dipoles : list of instance of Dipole
The dipole fits.
residual : instance of Evoked
The residual a.k.a. data not explained by the dipoles.
Only returned if return_residual is True.
See Also
--------
mne.fit_dipole
mne.beamformer.trap_music
Notes
-----
.. versionadded:: 0.9.0
References
----------
.. footbibliography::
"""
return _rap_music(evoked, forward, noise_cov, n_dipoles, return_residual, False)
@verbose
def trap_music(
evoked,
forward,
noise_cov,
n_dipoles=5,
return_residual=False,
*,
verbose=None,
):
"""TRAP-MUSIC source localization method.
Compute Truncated Recursively Applied and Projected MUltiple SIgnal Classification
(TRAP-MUSIC) :footcite:`Makela2018` on evoked data.
.. note:: The goodness of fit (GOF) of all the returned dipoles is the
same and corresponds to the GOF of the full set of dipoles.
Parameters
----------
evoked : instance of Evoked
Evoked data to localize.
forward : instance of Forward
Forward operator.
noise_cov : instance of Covariance
The noise covariance.
n_dipoles : int
The number of dipoles to look for. The default value is 5.
return_residual : bool
If True, the residual is returned as an Evoked instance.
%(verbose)s
Returns
-------
dipoles : list of instance of Dipole
The dipole fits.
residual : instance of Evoked
The residual a.k.a. data not explained by the dipoles.
Only returned if return_residual is True.
See Also
--------
mne.fit_dipole
mne.beamformer.rap_music
Notes
-----
.. versionadded:: 1.4
References
----------
.. footbibliography::
"""
return _rap_music(evoked, forward, noise_cov, n_dipoles, return_residual, True)