forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_utils.py
204 lines (170 loc) · 6.83 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Authors: Alexandre Gramfort <[email protected]>
#
# License: Simplified BSD
from pathlib import Path
import numpy as np
from numpy.testing import assert_allclose
import pytest
import matplotlib.pyplot as plt
from mne.viz.utils import (
compare_fiff,
_fake_click,
_compute_scalings,
_validate_if_list_of_axes,
_get_color_list,
_setup_vmin_vmax,
centers_to_edges,
_make_event_color_dict,
concatenate_images,
)
from mne.viz import ClickableImage, add_background_image, mne_analyze_colormap
from mne.io import read_raw_fif
from mne.event import read_events
from mne.epochs import Epochs
base_dir = Path(__file__).parent.parent.parent / "io" / "tests" / "data"
raw_fname = base_dir / "test_raw.fif"
cov_fname = base_dir / "test-cov.fif"
ev_fname = base_dir / "test_raw-eve.fif"
def test_setup_vmin_vmax_warns():
"""Test that _setup_vmin_vmax warns properly."""
expected_msg = r"\(min=0.0, max=1\) range.*minimum of data is -1"
with pytest.warns(UserWarning, match=expected_msg):
_setup_vmin_vmax(data=[-1, 0], vmin=None, vmax=None, norm=True)
def test_get_color_list():
"""Test getting a colormap from rcParams."""
colors = _get_color_list()
assert isinstance(colors, list)
colors_no_red = _get_color_list(annotations=True)
assert "#ff0000" not in colors_no_red
def test_mne_analyze_colormap():
"""Test mne_analyze_colormap."""
pytest.raises(ValueError, mne_analyze_colormap, [0])
pytest.raises(ValueError, mne_analyze_colormap, [-1, 1, 2])
pytest.raises(ValueError, mne_analyze_colormap, [0, 2, 1])
def test_compare_fiff():
"""Test compare_fiff."""
compare_fiff(raw_fname, cov_fname, read_limit=0, show=False)
plt.close("all")
def test_clickable_image():
"""Test the ClickableImage class."""
# Gen data and create clickable image
im = np.random.RandomState(0).randn(100, 100)
clk = ClickableImage(im)
clicks = [(12, 8), (46, 48), (10, 24)]
# Generate clicks
for click in clicks:
_fake_click(clk.fig, clk.ax, click, xform="data")
assert_allclose(np.array(clicks), np.array(clk.coords))
assert len(clicks) == len(clk.coords)
# Exporting to layout
lt = clk.to_layout()
assert lt.pos.shape[0] == len(clicks)
assert_allclose(lt.pos[1, 0] / lt.pos[2, 0], clicks[1][0] / float(clicks[2][0]))
clk.plot_clicks()
plt.close("all")
def test_add_background_image():
"""Test adding background image to a figure."""
rng = np.random.RandomState(0)
for ii in range(2):
f, axs = plt.subplots(1, 2)
x, y = rng.randn(2, 10)
im = rng.randn(10, 10)
axs[0].scatter(x, y)
axs[1].scatter(y, x)
for ax in axs:
ax.set_aspect(1)
# Background without changing aspect
if ii == 0:
ax_im = add_background_image(f, im)
return
assert ax_im.get_aspect() == "auto"
for ax in axs:
assert ax.get_aspect() == 1
else:
# Background with changing aspect
ax_im_asp = add_background_image(f, im, set_ratios="auto")
assert ax_im_asp.get_aspect() == "auto"
for ax in axs:
assert ax.get_aspect() == "auto"
plt.close("all")
# Make sure passing None as image returns None
f, axs = plt.subplots(1, 2)
assert add_background_image(f, None) is None
plt.close("all")
def test_auto_scale():
"""Test auto-scaling of channels for quick plotting."""
raw = read_raw_fif(raw_fname)
epochs = Epochs(raw, read_events(ev_fname))
rand_data = np.random.randn(10, 100)
for inst in [raw, epochs]:
scale_grad = 1e10
scalings_def = dict([("eeg", "auto"), ("grad", scale_grad), ("stim", "auto")])
# Test for wrong inputs
with pytest.raises(ValueError, match=r".*scalings.*'foo'.*"):
inst.plot(scalings="foo")
# Make sure compute_scalings doesn't change anything not auto
scalings_new = _compute_scalings(scalings_def, inst)
assert scale_grad == scalings_new["grad"]
assert scalings_new["eeg"] != "auto"
with pytest.raises(ValueError, match="Must supply either Raw or Epochs"):
_compute_scalings(scalings_def, rand_data)
epochs = epochs[0].load_data()
epochs.pick_types(eeg=True, meg=False)
def test_validate_if_list_of_axes():
"""Test validation of axes."""
fig, ax = plt.subplots(2, 2)
pytest.raises(ValueError, _validate_if_list_of_axes, ax)
ax_flat = ax.ravel()
ax = ax.ravel().tolist()
_validate_if_list_of_axes(ax_flat)
_validate_if_list_of_axes(ax_flat, 4)
pytest.raises(ValueError, _validate_if_list_of_axes, ax_flat, 5)
pytest.raises(ValueError, _validate_if_list_of_axes, ax, 3)
pytest.raises(TypeError, _validate_if_list_of_axes, "error")
pytest.raises(TypeError, _validate_if_list_of_axes, ["error"] * 2)
pytest.raises(TypeError, _validate_if_list_of_axes, ax[0])
pytest.raises(ValueError, _validate_if_list_of_axes, ax, 3)
ax_flat[2] = 23
pytest.raises(TypeError, _validate_if_list_of_axes, ax_flat)
_validate_if_list_of_axes(ax, 4)
plt.close("all")
def test_centers_to_edges():
"""Test centers_to_edges."""
assert_allclose(centers_to_edges([0, 1, 2])[0], [-0.5, 0.5, 1.5, 2.5])
assert_allclose(centers_to_edges([0])[0], [-0.001, 0.001])
assert_allclose(centers_to_edges([1])[0], [0.999, 1.001])
assert_allclose(centers_to_edges([1000])[0], [999.0, 1001.0])
def test_event_color_dict():
"""Test handling of event_color."""
one = _make_event_color_dict("k")
two = _make_event_color_dict((0, 0, 0))
three = _make_event_color_dict("#000")
assert one == two
assert one == three
# test dict with integer keys / event name keys
event_id = dict(foo=1, bar=2)
one = _make_event_color_dict({1: "r", 2: "b"}, event_id=event_id)
two = _make_event_color_dict(dict(foo="r", bar="b"), event_id=event_id)
assert one == two
# test default value
one = _make_event_color_dict({1: "r", -1: "b"}, event_id=event_id)
two = _make_event_color_dict({1: "r", 2: "b"}, event_id=event_id)
assert one[2] == two[2]
# test error
with pytest.raises(KeyError, match="must be strictly positive, or -1"):
_ = _make_event_color_dict({-2: "r", -1: "b"})
@pytest.mark.parametrize("axis", (0, 1))
@pytest.mark.parametrize("b_h", (2, 4))
@pytest.mark.parametrize("b_w", (3, 5))
@pytest.mark.parametrize("a_h", (2, 4))
@pytest.mark.parametrize("a_w", (3, 5))
def test_concatenate_images(a_w, a_h, b_w, b_h, axis):
"""Test that concat with arbitrary sizes works."""
a = np.zeros((a_h, a_w, 3))
b = np.zeros((b_h, b_w, 3))
img = concatenate_images([a, b], axis=axis)
if axis == 0:
want_shape = (a_h + b_h, max(a_w, b_w), 3)
else:
want_shape = (max(a_h, b_h), a_w + b_w, 3)
assert img.shape == want_shape