-
Notifications
You must be signed in to change notification settings - Fork 0
/
normalize.cc
373 lines (321 loc) · 13.5 KB
/
normalize.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#include "lm/interpolate/normalize.hh"
#include "lm/common/compare.hh"
#include "lm/common/ngram_stream.hh"
#include "lm/interpolate/backoff_matrix.hh"
#include "lm/interpolate/bounded_sequence_encoding.hh"
#include "lm/interpolate/interpolate_info.hh"
#include "lm/interpolate/merge_probabilities.hh"
#include "lm/weights.hh"
#include "lm/word_index.hh"
#include "util/fixed_array.hh"
#include "util/scoped.hh"
#include "util/stream/stream.hh"
#include "util/stream/rewindable_stream.hh"
#include <functional>
#include <queue>
#include <vector>
namespace lm { namespace interpolate {
namespace {
class BackoffQueueEntry {
public:
BackoffQueueEntry(float &entry, const util::stream::ChainPosition &position)
: entry_(entry), stream_(position) {
entry_ = 0.0;
}
operator bool() const { return stream_; }
NGramHeader operator*() const { return *stream_; }
const NGramHeader *operator->() const { return &*stream_; }
void Enter() {
entry_ = stream_->Value().backoff;
}
BackoffQueueEntry &Next() {
entry_ = 0.0;
++stream_;
return *this;
}
private:
float &entry_;
NGramStream<ProbBackoff> stream_;
};
struct PtrGreater : public std::binary_function<const BackoffQueueEntry *, const BackoffQueueEntry *, bool> {
bool operator()(const BackoffQueueEntry *first, const BackoffQueueEntry *second) const {
return SuffixLexicographicLess<NGramHeader>()(**second, **first);
}
};
class EntryOwner : public util::FixedArray<BackoffQueueEntry> {
public:
void push_back(float &entry, const util::stream::ChainPosition &position) {
new (end()) BackoffQueueEntry(entry, position);
Constructed();
}
};
std::size_t MaxOrder(const util::FixedArray<util::stream::ChainPositions> &model) {
std::size_t ret = 0;
for (const util::stream::ChainPositions *m = model.begin(); m != model.end(); ++m) {
ret = std::max(ret, m->size());
}
return ret;
}
class BackoffManager {
public:
explicit BackoffManager(const util::FixedArray<util::stream::ChainPositions> &models)
: entered_(MaxOrder(models)), matrix_(models.size(), MaxOrder(models)), skip_write_(MaxOrder(models)) {
std::size_t total = 0;
for (const util::stream::ChainPositions *m = models.begin(); m != models.end(); ++m) {
total += m->size();
}
for (std::size_t i = 0; i < MaxOrder(models); ++i) {
entered_.push_back(models.size());
}
owner_.Init(total);
for (const util::stream::ChainPositions *m = models.begin(); m != models.end(); ++m) {
for (const util::stream::ChainPosition *j = m->begin(); j != m->end(); ++j) {
owner_.push_back(matrix_.Backoff(m - models.begin(), j - m->begin()), *j);
if (owner_.back()) {
queue_.push(&owner_.back());
}
}
}
}
void SetupSkip(std::size_t order, util::stream::Stream &stream) {
skip_write_[order - 2] = &stream;
}
// Move up the backoffs for the given n-gram. The n-grams must be provided
// in suffix lexicographic order.
void Enter(const NGramHeader &to) {
// Check that we exited properly.
for (std::size_t i = to.Order() - 1; i < entered_.size(); ++i) {
assert(entered_[i].empty());
}
SuffixLexicographicLess<NGramHeader> less;
while (!queue_.empty() && less(**queue_.top(), to))
SkipRecord();
while (TopMatches(to)) {
BackoffQueueEntry *matches = queue_.top();
entered_[to.Order() - 1].push_back(matches);
matches->Enter();
queue_.pop();
}
}
void Exit(std::size_t order_minus_1) {
for (BackoffQueueEntry **i = entered_[order_minus_1].begin(); i != entered_[order_minus_1].end(); ++i) {
if ((*i)->Next())
queue_.push(*i);
}
entered_[order_minus_1].clear();
}
float Get(std::size_t model, std::size_t order_minus_1) const {
return matrix_.Backoff(model, order_minus_1);
}
void Finish() {
while (!queue_.empty())
SkipRecord();
}
private:
void SkipRecord() {
BackoffQueueEntry *top = queue_.top();
queue_.pop();
// Is this the last instance of the n-gram?
if (!TopMatches(**top)) {
// An n-gram is being skipped. Called once per skipped n-gram,
// regardless of how many models it comes from.
*reinterpret_cast<float*>(skip_write_[(*top)->Order() - 1]->Get()) = 0.0;
++*skip_write_[(*top)->Order() - 1];
}
if (top->Next())
queue_.push(top);
}
bool TopMatches(const NGramHeader &header) const {
return !queue_.empty() && (*queue_.top())->Order() == header.Order() && std::equal(header.begin(), header.end(), (*queue_.top())->begin());
}
EntryOwner owner_;
std::priority_queue<BackoffQueueEntry*, std::vector<BackoffQueueEntry*>, PtrGreater> queue_;
// Indexed by order then just all the matching models.
util::FixedArray<util::FixedArray<BackoffQueueEntry*> > entered_;
BackoffMatrix matrix_;
std::vector<util::stream::Stream*> skip_write_;
};
typedef long double Accum;
// Handles n-grams of the same order, using recursion to call another instance
// for higher orders.
class Recurse {
public:
Recurse(
const InterpolateInfo &info, // Must stay alive the entire time.
std::size_t order,
const util::stream::ChainPosition &merged_probs,
const util::stream::ChainPosition &prob_out,
const util::stream::ChainPosition &backoff_out,
BackoffManager &backoffs,
Recurse *higher) // higher is null for the highest order.
: order_(order),
encoding_(MakeEncoder(info, order)),
input_(merged_probs, PartialProbGamma(order, encoding_.EncodedLength())),
prob_out_(prob_out),
backoff_out_(backoff_out),
backoffs_(backoffs),
lambdas_(&*info.lambdas.begin()),
higher_(higher),
decoded_backoffs_(info.Models()),
extended_context_(order - 1) {
// This is only for bigrams and above. Summing unigrams is a much easier case.
assert(order >= 2);
}
// context = w_1^{n-1}
// z_lower = Z(w_2^{n-1})
// Input:
// Merged probabilities without backoff applied in input_.
// Backoffs via backoffs_.
// Calculates:
// Z(w_1^{n-1}): intermediate only.
// p_I(x | w_1^{n-1}) for all x: w_1^{n-1}x exists: Written to prob_out_.
// b_I(w_1^{n-1}): Written to backoff_out_.
void SameContext(const NGramHeader &context, Accum z_lower) {
assert(context.size() == order_ - 1);
backoffs_.Enter(context);
prob_out_.Mark();
// This is the backoff term that applies when one assumes everything backs off:
// \prod_i b_i(w_1^{n-1})^{\lambda_i}.
Accum backoff_once = 0.0;
for (std::size_t m = 0; m < decoded_backoffs_.size(); ++m) {
backoff_once += lambdas_[m] * backoffs_.Get(m, order_ - 2);
}
Accum z_delta = 0.0;
std::size_t count = 0;
for (; input_ && std::equal(context.begin(), context.end(), input_->begin()); ++input_, ++prob_out_, ++count) {
// Apply backoffs to probabilities.
// TODO: change bounded sequence encoding to have an iterator for decoding instead of doing a copy here.
encoding_.Decode(input_->FromBegin(), &*decoded_backoffs_.begin());
for (std::size_t m = 0; m < NumModels(); ++m) {
// Apply the backoffs as instructed for model m.
float accumulated = 0.0;
// Change backoffs for [order it backed off to, order - 1) except
// with 0-indexing. There is still the potential to charge backoff
// for order - 1, which is done later. The backoffs charged here
// are b_m(w_{n-1}^{n-1}) ... b_m(w_2^{n-1})
for (unsigned char backed_to = decoded_backoffs_[m]; backed_to < order_ - 2; ++backed_to) {
accumulated += backoffs_.Get(m, backed_to);
}
float lambda = lambdas_[m];
// Lower p(x | w_2^{n-1}) gets all the backoffs except the highest.
input_->LowerProb() += accumulated * lambda;
// Charge the backoff b(w_1^{n-1}) if applicable, but only to attain p(x | w_1^{n-1})
if (decoded_backoffs_[m] < order_ - 1) {
accumulated += backoffs_.Get(m, order_ - 2);
}
input_->Prob() += accumulated * lambda;
}
// TODO: better precision/less operations here.
z_delta += pow(10.0, input_->Prob()) - pow(10.0, input_->LowerProb() + backoff_once);
// Write unnormalized probability record.
std::copy(input_->begin(), input_->end(), reinterpret_cast<WordIndex*>(prob_out_.Get()));
ProbWrite() = input_->Prob();
}
// TODO numerical precision.
Accum z = log10(pow(10.0, z_lower + backoff_once) + z_delta);
// Normalize.
prob_out_.Rewind();
for (std::size_t i = 0; i < count; ++i, ++prob_out_) {
ProbWrite() -= z;
}
// This allows the stream to release data.
prob_out_.Mark();
// Output backoff.
*reinterpret_cast<float*>(backoff_out_.Get()) = z_lower + backoff_once - z;
++backoff_out_;
if (higher_.get())
higher_->ExtendContext(context, z);
backoffs_.Exit(order_ - 2);
}
// Call is given a context and z(context).
// Evaluates y context x for all y,x.
void ExtendContext(const NGramHeader &middle, Accum z_lower) {
assert(middle.size() == order_ - 2);
// Copy because the input will advance. TODO avoid this copy by sharing amongst classes.
std::copy(middle.begin(), middle.end(), extended_context_.begin() + 1);
while (input_ && std::equal(middle.begin(), middle.end(), input_->begin() + 1)) {
*extended_context_.begin() = *input_->begin();
SameContext(NGramHeader(&*extended_context_.begin(), order_ - 1), z_lower);
}
}
void Finish() {
assert(!input_);
prob_out_.Poison();
backoff_out_.Poison();
if (higher_.get())
higher_->Finish();
}
// The BackoffManager class also injects backoffs when it skips ahead e.g. b(</s>) = 1
util::stream::Stream &BackoffStream() { return backoff_out_; }
private:
// Write the probability to the correct place in prob_out_. Should use a proxy but currently incompatible with RewindableStream.
float &ProbWrite() {
return *reinterpret_cast<float*>(reinterpret_cast<uint8_t*>(prob_out_.Get()) + order_ * sizeof(WordIndex));
}
std::size_t NumModels() const { return decoded_backoffs_.size(); }
const std::size_t order_;
const BoundedSequenceEncoding encoding_;
ProxyStream<PartialProbGamma> input_;
util::stream::RewindableStream prob_out_;
util::stream::Stream backoff_out_;
BackoffManager &backoffs_;
const float *const lambdas_;
// Higher order instance of this same class.
util::scoped_ptr<Recurse> higher_;
// Temporary in SameContext.
std::vector<unsigned char> decoded_backoffs_;
// Temporary in ExtendContext.
std::vector<WordIndex> extended_context_;
};
class Thread {
public:
Thread(const InterpolateInfo &info, util::FixedArray<util::stream::ChainPositions> &models_by_order, util::stream::Chains &prob_out, util::stream::Chains &backoff_out)
: info_(info), models_by_order_(models_by_order), prob_out_(prob_out), backoff_out_(backoff_out) {}
void Run(const util::stream::ChainPositions &merged_probabilities) {
// Unigrams do not have enocded backoff info.
ProxyStream<PartialProbGamma> in(merged_probabilities[0], PartialProbGamma(1, 0));
util::stream::RewindableStream prob_write(prob_out_[0]);
Accum z = 0.0;
prob_write.Mark();
WordIndex count = 0;
for (; in; ++in, ++prob_write, ++count) {
// Note assumption that probabilitity comes first
memcpy(prob_write.Get(), in.Get(), sizeof(WordIndex) + sizeof(float));
z += pow(10.0, in->Prob());
}
// TODO HACK TODO: lmplz outputs p(<s>) = 1 to get q to compute nicely. That will always result in 1.0 more than it should be.
z -= 1.0;
float log_z = log10(z);
prob_write.Rewind();
// Normalize unigram probabilities.
for (WordIndex i = 0; i < count; ++i, ++prob_write) {
*reinterpret_cast<float*>(reinterpret_cast<uint8_t*>(prob_write.Get()) + sizeof(WordIndex)) -= log_z;
}
prob_write.Poison();
// Now setup the higher orders.
util::scoped_ptr<Recurse> higher_order;
BackoffManager backoffs(models_by_order_);
std::size_t max_order = merged_probabilities.size();
for (std::size_t order = max_order; order >= 2; --order) {
higher_order.reset(new Recurse(info_, order, merged_probabilities[order - 1], prob_out_[order - 1], backoff_out_[order - 2], backoffs, higher_order.release()));
backoffs.SetupSkip(order, higher_order->BackoffStream());
}
if (max_order > 1) {
higher_order->ExtendContext(NGramHeader(NULL, 0), log_z);
backoffs.Finish();
higher_order->Finish();
}
}
private:
const InterpolateInfo info_;
util::FixedArray<util::stream::ChainPositions> &models_by_order_;
util::stream::ChainPositions prob_out_;
util::stream::ChainPositions backoff_out_;
};
} // namespace
void Normalize(const InterpolateInfo &info, util::FixedArray<util::stream::ChainPositions> &models_by_order, util::stream::Chains &merged_probabilities, util::stream::Chains &prob_out, util::stream::Chains &backoff_out) {
assert(prob_out.size() == backoff_out.size() + 1);
// Arbitrarily put the thread on the merged_probabilities Chains.
merged_probabilities >> Thread(info, models_by_order, prob_out, backoff_out);
}
}} // namespaces