|
1 | 1 |
|
| 2 | +# Numpy & Pandas 学习目录 |
| 3 | +<img src='https://github.com/MorvanZhou/tutorials/blob/master/numpy&pandas/cover%20page.jpg?raw=true' height=200> |
| 4 | + |
| 5 | +--- |
| 6 | +## *点击标题进入Youtube视频教程* |
| 7 | + |
| 8 | +1. [Numpy & Pandas 有什么用?](https://www.youtube.com/watch?v=To3YL92HZyc&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=1) |
| 9 | + * 介绍我们 python 科学运算中不可少的两个重要模块, numpy 和 pandas. |
| 10 | + * [优酷链接](http://v.youku.com/v_show/id_XMTU4NjM3MTc4MA==.html?f=27329155&o=1) |
| 11 | + |
| 12 | + |
| 13 | +2. [安装](https://www.youtube.com/watch?v=JauGYB-Bzuw&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=2) |
| 14 | + * 介绍如何安装 |
| 15 | + * [优酷链接](http://v.youku.com/v_show/id_XMTU4NjM5NzgyNA==.html?f=27329155&o=1) |
| 16 | + |
| 17 | + |
| 18 | +3. [Numpy 属性](https://www.youtube.com/watch?v=mf7ktBLwaJs&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=3) |
| 19 | + * 运用 numpy 的一些属性. |
| 20 | + * [优酷链接](http://v.youku.com/v_show/id_XMTU4NjU0MzE4NA==.html?f=27329155&o=1) |
| 21 | + |
| 22 | + |
| 23 | +4. [Numpy 创建 array](https://www.youtube.com/watch?v=2TkMujKoDPI&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=4) |
| 24 | + * 简单的 array 数组创建方法. |
| 25 | + * [优酷链接](http://v.youku.com/v_show/id_XMTU4NzUzNDE0MA==.html?f=27329155&o=1) |
| 26 | + |
| 27 | + |
| 28 | +5. [Numpy 基础运算](https://www.youtube.com/watch?v=4QgQaNtuZLA&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=5) |
| 29 | + * 简单的数学运算法则. |
| 30 | + * [优酷链接](http://v.youku.com/v_show/id_XMTU4ODI0OTQ1Ng==.html?f=27329155&o=1) |
| 31 | + |
| 32 | + |
| 33 | +6. [Numpy 基础运算2](https://www.youtube.com/watch?v=T9es_lniLl0&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=6) |
| 34 | + * 同上 |
| 35 | + * [优酷链接](http://v.youku.com/v_show/id_XMTU4ODY1NDQwNA==.html?f=27329155&o=1) |
| 36 | + |
| 37 | + |
| 38 | +7. [Numpy 索引](https://www.youtube.com/watch?v=82Tva71Lm1E&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=7) |
| 39 | + * 运用索引来找到需要的数据. |
| 40 | + * [优酷链接](http://v.youku.com/v_show/id_XMTU4ODY3NTE2OA==.html?f=27329155&o=1) |
| 41 | + |
| 42 | + |
| 43 | +8. [Numpy array 合并](https://www.youtube.com/watch?v=ttSUtDTjDyI&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=8) |
| 44 | + * 不同 array 之间的合并问题. |
| 45 | + * [优酷链接](http://v.youku.com/v_show/id_XMTU4ODcwNjI1Ng==.html?f=27329155&o=1) |
| 46 | + |
| 47 | + |
| 48 | +9. [Numpy array 分割](https://www.youtube.com/watch?v=o1j-biEc1Pc&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=9) |
| 49 | + * 对于一个 array 我们怎样分割. |
| 50 | + * [优酷链接](http://v.youku.com/v_show/id_XMTU4ODcyODMwMA==.html?f=27329155&o=1) |
| 51 | + |
| 52 | + |
| 53 | +10. [Numpy copy和deepcopy](https://www.youtube.com/watch?v=lXmiDyktnCA&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=10) |
| 54 | + * 数据的深复制和浅复制. |
| 55 | + * [优酷链接](http://v.youku.com/v_show/id_XMTU4ODc2ODUwOA==.html?f=27329155&o=1) |
| 56 | + |
| 57 | + |
| 58 | +11. [Pandas 基本介绍](https://www.youtube.com/watch?v=R6oAP8A2lNQ&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=11) |
| 59 | + * 介绍 pandas 和 numpy 的不同 和他的更高级之处. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/numpy%26pandas/11_pandas_intro.py)) |
| 60 | + * [优酷链接](http://v.youku.com/v_show/id_XMTYyOTg1MzE2OA==.html?f=27329155&o=1) |
| 61 | + |
| 62 | + |
| 63 | +12. [Pandas 选择数据](https://www.youtube.com/watch?v=BRps4z_EJO0&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=12) |
| 64 | + * 在 pandas 中是如何选择数据的. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/numpy%26pandas/12_selection.py)) |
| 65 | + * [优酷链接](http://v.youku.com/v_show/id_XMTYzMDE5ODc2OA==.html?f=27329155&o=1) |
| 66 | + |
| 67 | + |
| 68 | +13. [Pandas 设置值](https://www.youtube.com/watch?v=HuGMmE97LnY&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=13) |
| 69 | + * pandas 的设置值方法也和 numpy 的不一样. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/numpy%26pandas/13_set_value.py)) |
| 70 | + * [优酷链接](http://v.youku.com/v_show/id_XMTYzMDIzODI4OA==.html?f=27329155&o=1) |
| 71 | + |
| 72 | + |
| 73 | +14. [Pandas 处理丢失数据](https://www.youtube.com/watch?v=H9jqCR4z7Pw&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=14) |
| 74 | + * 有时候我们会有很多空缺数据, 如何处理呢. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/numpy%26pandas/14_nan.py)) |
| 75 | + * [优酷链接](http://v.youku.com/v_show/id_XMTYzMTUxNzgwOA==.html?f=27329155&o=1) |
| 76 | + |
| 77 | + |
| 78 | +15. [Pandas 导入导出](https://www.youtube.com/watch?v=Vb2aR_t957E&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=15) |
| 79 | + * pandas 可以导入很多不同类型的数据, 比如Excel, txt 等等. 导出保存数据也是很方便的 ([代码](https://github.com/MorvanZhou/tutorials/tree/master/numpy%26pandas/15_read_to)) |
| 80 | + * [优酷链接](http://v.youku.com/v_show/id_XMTYzODIxMTg3Mg==.html?f=27329155&o=1) |
| 81 | + |
| 82 | + |
| 83 | +16. [Pandas 合并 concat](https://www.youtube.com/watch?v=DcyFh2m3g6c&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=16) |
| 84 | + * 使用 concat 方法合并数据. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/numpy%26pandas/16_concat.py)) |
| 85 | + * [优酷链接](http://v.youku.com/v_show/id_XMTYzODQ4MzY0OA==.html?f=27329155&o=1) |
| 86 | + |
| 87 | + |
| 88 | +17. [Pandas 合并 merge](https://www.youtube.com/watch?v=Y2xmMG_jXnc&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=17) |
| 89 | + * 使用 merge 方法合并数据. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/numpy%26pandas/17_merge.py)) |
| 90 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY0NDUzMDYzMg==.html?f=27329155&o=1) |
| 91 | + |
| 92 | + |
| 93 | +18. [Pandas plot可视化](https://www.youtube.com/watch?v=SCMLObsel5I&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4&index=18) |
| 94 | + * 可视化数据之间的关系. ([代码](https://github.com/MorvanZhou/tutorials/blob/master/numpy%26pandas/18_plot.py)) |
| 95 | + * [优酷链接](http://v.youku.com/v_show/id_XMTY0NDcxODQ4NA==.html?f=27329155&o=1) |
| 96 | + |
0 commit comments