forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbio.c
1850 lines (1598 loc) · 49.3 KB
/
bio.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2001 Jens Axboe <[email protected]>
*/
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio-integrity.h>
#include <linux/blkdev.h>
#include <linux/uio.h>
#include <linux/iocontext.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/mempool.h>
#include <linux/workqueue.h>
#include <linux/cgroup.h>
#include <linux/highmem.h>
#include <linux/blk-crypto.h>
#include <linux/xarray.h>
#include <trace/events/block.h>
#include "blk.h"
#include "blk-rq-qos.h"
#include "blk-cgroup.h"
#define ALLOC_CACHE_THRESHOLD 16
#define ALLOC_CACHE_MAX 256
struct bio_alloc_cache {
struct bio *free_list;
struct bio *free_list_irq;
unsigned int nr;
unsigned int nr_irq;
};
static struct biovec_slab {
int nr_vecs;
char *name;
struct kmem_cache *slab;
} bvec_slabs[] __read_mostly = {
{ .nr_vecs = 16, .name = "biovec-16" },
{ .nr_vecs = 64, .name = "biovec-64" },
{ .nr_vecs = 128, .name = "biovec-128" },
{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
};
static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
{
switch (nr_vecs) {
/* smaller bios use inline vecs */
case 5 ... 16:
return &bvec_slabs[0];
case 17 ... 64:
return &bvec_slabs[1];
case 65 ... 128:
return &bvec_slabs[2];
case 129 ... BIO_MAX_VECS:
return &bvec_slabs[3];
default:
BUG();
return NULL;
}
}
/*
* fs_bio_set is the bio_set containing bio and iovec memory pools used by
* IO code that does not need private memory pools.
*/
struct bio_set fs_bio_set;
EXPORT_SYMBOL(fs_bio_set);
/*
* Our slab pool management
*/
struct bio_slab {
struct kmem_cache *slab;
unsigned int slab_ref;
unsigned int slab_size;
char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
static DEFINE_XARRAY(bio_slabs);
static struct bio_slab *create_bio_slab(unsigned int size)
{
struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
if (!bslab)
return NULL;
snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
bslab->slab = kmem_cache_create(bslab->name, size,
ARCH_KMALLOC_MINALIGN,
SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
if (!bslab->slab)
goto fail_alloc_slab;
bslab->slab_ref = 1;
bslab->slab_size = size;
if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
return bslab;
kmem_cache_destroy(bslab->slab);
fail_alloc_slab:
kfree(bslab);
return NULL;
}
static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
{
return bs->front_pad + sizeof(struct bio) + bs->back_pad;
}
static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
{
unsigned int size = bs_bio_slab_size(bs);
struct bio_slab *bslab;
mutex_lock(&bio_slab_lock);
bslab = xa_load(&bio_slabs, size);
if (bslab)
bslab->slab_ref++;
else
bslab = create_bio_slab(size);
mutex_unlock(&bio_slab_lock);
if (bslab)
return bslab->slab;
return NULL;
}
static void bio_put_slab(struct bio_set *bs)
{
struct bio_slab *bslab = NULL;
unsigned int slab_size = bs_bio_slab_size(bs);
mutex_lock(&bio_slab_lock);
bslab = xa_load(&bio_slabs, slab_size);
if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
goto out;
WARN_ON_ONCE(bslab->slab != bs->bio_slab);
WARN_ON(!bslab->slab_ref);
if (--bslab->slab_ref)
goto out;
xa_erase(&bio_slabs, slab_size);
kmem_cache_destroy(bslab->slab);
kfree(bslab);
out:
mutex_unlock(&bio_slab_lock);
}
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
{
BUG_ON(nr_vecs > BIO_MAX_VECS);
if (nr_vecs == BIO_MAX_VECS)
mempool_free(bv, pool);
else if (nr_vecs > BIO_INLINE_VECS)
kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
}
/*
* Make the first allocation restricted and don't dump info on allocation
* failures, since we'll fall back to the mempool in case of failure.
*/
static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
{
return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
}
struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
gfp_t gfp_mask)
{
struct biovec_slab *bvs = biovec_slab(*nr_vecs);
if (WARN_ON_ONCE(!bvs))
return NULL;
/*
* Upgrade the nr_vecs request to take full advantage of the allocation.
* We also rely on this in the bvec_free path.
*/
*nr_vecs = bvs->nr_vecs;
/*
* Try a slab allocation first for all smaller allocations. If that
* fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
* The mempool is sized to handle up to BIO_MAX_VECS entries.
*/
if (*nr_vecs < BIO_MAX_VECS) {
struct bio_vec *bvl;
bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
return bvl;
*nr_vecs = BIO_MAX_VECS;
}
return mempool_alloc(pool, gfp_mask);
}
void bio_uninit(struct bio *bio)
{
#ifdef CONFIG_BLK_CGROUP
if (bio->bi_blkg) {
blkg_put(bio->bi_blkg);
bio->bi_blkg = NULL;
}
#endif
if (bio_integrity(bio))
bio_integrity_free(bio);
bio_crypt_free_ctx(bio);
}
EXPORT_SYMBOL(bio_uninit);
static void bio_free(struct bio *bio)
{
struct bio_set *bs = bio->bi_pool;
void *p = bio;
WARN_ON_ONCE(!bs);
bio_uninit(bio);
bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
mempool_free(p - bs->front_pad, &bs->bio_pool);
}
/*
* Users of this function have their own bio allocation. Subsequently,
* they must remember to pair any call to bio_init() with bio_uninit()
* when IO has completed, or when the bio is released.
*/
void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
unsigned short max_vecs, blk_opf_t opf)
{
bio->bi_next = NULL;
bio->bi_bdev = bdev;
bio->bi_opf = opf;
bio->bi_flags = 0;
bio->bi_ioprio = 0;
bio->bi_write_hint = 0;
bio->bi_status = 0;
bio->bi_iter.bi_sector = 0;
bio->bi_iter.bi_size = 0;
bio->bi_iter.bi_idx = 0;
bio->bi_iter.bi_bvec_done = 0;
bio->bi_end_io = NULL;
bio->bi_private = NULL;
#ifdef CONFIG_BLK_CGROUP
bio->bi_blkg = NULL;
bio->bi_issue.value = 0;
if (bdev)
bio_associate_blkg(bio);
#ifdef CONFIG_BLK_CGROUP_IOCOST
bio->bi_iocost_cost = 0;
#endif
#endif
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
bio->bi_crypt_context = NULL;
#endif
#ifdef CONFIG_BLK_DEV_INTEGRITY
bio->bi_integrity = NULL;
#endif
bio->bi_vcnt = 0;
atomic_set(&bio->__bi_remaining, 1);
atomic_set(&bio->__bi_cnt, 1);
bio->bi_cookie = BLK_QC_T_NONE;
bio->bi_max_vecs = max_vecs;
bio->bi_io_vec = table;
bio->bi_pool = NULL;
}
EXPORT_SYMBOL(bio_init);
/**
* bio_reset - reinitialize a bio
* @bio: bio to reset
* @bdev: block device to use the bio for
* @opf: operation and flags for bio
*
* Description:
* After calling bio_reset(), @bio will be in the same state as a freshly
* allocated bio returned bio bio_alloc_bioset() - the only fields that are
* preserved are the ones that are initialized by bio_alloc_bioset(). See
* comment in struct bio.
*/
void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
{
bio_uninit(bio);
memset(bio, 0, BIO_RESET_BYTES);
atomic_set(&bio->__bi_remaining, 1);
bio->bi_bdev = bdev;
if (bio->bi_bdev)
bio_associate_blkg(bio);
bio->bi_opf = opf;
}
EXPORT_SYMBOL(bio_reset);
static struct bio *__bio_chain_endio(struct bio *bio)
{
struct bio *parent = bio->bi_private;
if (bio->bi_status && !parent->bi_status)
parent->bi_status = bio->bi_status;
bio_put(bio);
return parent;
}
static void bio_chain_endio(struct bio *bio)
{
bio_endio(__bio_chain_endio(bio));
}
/**
* bio_chain - chain bio completions
* @bio: the target bio
* @parent: the parent bio of @bio
*
* The caller won't have a bi_end_io called when @bio completes - instead,
* @parent's bi_end_io won't be called until both @parent and @bio have
* completed; the chained bio will also be freed when it completes.
*
* The caller must not set bi_private or bi_end_io in @bio.
*/
void bio_chain(struct bio *bio, struct bio *parent)
{
BUG_ON(bio->bi_private || bio->bi_end_io);
bio->bi_private = parent;
bio->bi_end_io = bio_chain_endio;
bio_inc_remaining(parent);
}
EXPORT_SYMBOL(bio_chain);
/**
* bio_chain_and_submit - submit a bio after chaining it to another one
* @prev: bio to chain and submit
* @new: bio to chain to
*
* If @prev is non-NULL, chain it to @new and submit it.
*
* Return: @new.
*/
struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
{
if (prev) {
bio_chain(prev, new);
submit_bio(prev);
}
return new;
}
struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
{
return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
}
EXPORT_SYMBOL_GPL(blk_next_bio);
static void bio_alloc_rescue(struct work_struct *work)
{
struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
struct bio *bio;
while (1) {
spin_lock(&bs->rescue_lock);
bio = bio_list_pop(&bs->rescue_list);
spin_unlock(&bs->rescue_lock);
if (!bio)
break;
submit_bio_noacct(bio);
}
}
static void punt_bios_to_rescuer(struct bio_set *bs)
{
struct bio_list punt, nopunt;
struct bio *bio;
if (WARN_ON_ONCE(!bs->rescue_workqueue))
return;
/*
* In order to guarantee forward progress we must punt only bios that
* were allocated from this bio_set; otherwise, if there was a bio on
* there for a stacking driver higher up in the stack, processing it
* could require allocating bios from this bio_set, and doing that from
* our own rescuer would be bad.
*
* Since bio lists are singly linked, pop them all instead of trying to
* remove from the middle of the list:
*/
bio_list_init(&punt);
bio_list_init(&nopunt);
while ((bio = bio_list_pop(¤t->bio_list[0])))
bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
current->bio_list[0] = nopunt;
bio_list_init(&nopunt);
while ((bio = bio_list_pop(¤t->bio_list[1])))
bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
current->bio_list[1] = nopunt;
spin_lock(&bs->rescue_lock);
bio_list_merge(&bs->rescue_list, &punt);
spin_unlock(&bs->rescue_lock);
queue_work(bs->rescue_workqueue, &bs->rescue_work);
}
static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
{
unsigned long flags;
/* cache->free_list must be empty */
if (WARN_ON_ONCE(cache->free_list))
return;
local_irq_save(flags);
cache->free_list = cache->free_list_irq;
cache->free_list_irq = NULL;
cache->nr += cache->nr_irq;
cache->nr_irq = 0;
local_irq_restore(flags);
}
static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
struct bio_set *bs)
{
struct bio_alloc_cache *cache;
struct bio *bio;
cache = per_cpu_ptr(bs->cache, get_cpu());
if (!cache->free_list) {
if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
bio_alloc_irq_cache_splice(cache);
if (!cache->free_list) {
put_cpu();
return NULL;
}
}
bio = cache->free_list;
cache->free_list = bio->bi_next;
cache->nr--;
put_cpu();
bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
bio->bi_pool = bs;
return bio;
}
/**
* bio_alloc_bioset - allocate a bio for I/O
* @bdev: block device to allocate the bio for (can be %NULL)
* @nr_vecs: number of bvecs to pre-allocate
* @opf: operation and flags for bio
* @gfp_mask: the GFP_* mask given to the slab allocator
* @bs: the bio_set to allocate from.
*
* Allocate a bio from the mempools in @bs.
*
* If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
* allocate a bio. This is due to the mempool guarantees. To make this work,
* callers must never allocate more than 1 bio at a time from the general pool.
* Callers that need to allocate more than 1 bio must always submit the
* previously allocated bio for IO before attempting to allocate a new one.
* Failure to do so can cause deadlocks under memory pressure.
*
* Note that when running under submit_bio_noacct() (i.e. any block driver),
* bios are not submitted until after you return - see the code in
* submit_bio_noacct() that converts recursion into iteration, to prevent
* stack overflows.
*
* This would normally mean allocating multiple bios under submit_bio_noacct()
* would be susceptible to deadlocks, but we have
* deadlock avoidance code that resubmits any blocked bios from a rescuer
* thread.
*
* However, we do not guarantee forward progress for allocations from other
* mempools. Doing multiple allocations from the same mempool under
* submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
* for per bio allocations.
*
* Returns: Pointer to new bio on success, NULL on failure.
*/
struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
blk_opf_t opf, gfp_t gfp_mask,
struct bio_set *bs)
{
gfp_t saved_gfp = gfp_mask;
struct bio *bio;
void *p;
/* should not use nobvec bioset for nr_vecs > 0 */
if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
return NULL;
if (opf & REQ_ALLOC_CACHE) {
if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
gfp_mask, bs);
if (bio)
return bio;
/*
* No cached bio available, bio returned below marked with
* REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
*/
} else {
opf &= ~REQ_ALLOC_CACHE;
}
}
/*
* submit_bio_noacct() converts recursion to iteration; this means if
* we're running beneath it, any bios we allocate and submit will not be
* submitted (and thus freed) until after we return.
*
* This exposes us to a potential deadlock if we allocate multiple bios
* from the same bio_set() while running underneath submit_bio_noacct().
* If we were to allocate multiple bios (say a stacking block driver
* that was splitting bios), we would deadlock if we exhausted the
* mempool's reserve.
*
* We solve this, and guarantee forward progress, with a rescuer
* workqueue per bio_set. If we go to allocate and there are bios on
* current->bio_list, we first try the allocation without
* __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
* blocking to the rescuer workqueue before we retry with the original
* gfp_flags.
*/
if (current->bio_list &&
(!bio_list_empty(¤t->bio_list[0]) ||
!bio_list_empty(¤t->bio_list[1])) &&
bs->rescue_workqueue)
gfp_mask &= ~__GFP_DIRECT_RECLAIM;
p = mempool_alloc(&bs->bio_pool, gfp_mask);
if (!p && gfp_mask != saved_gfp) {
punt_bios_to_rescuer(bs);
gfp_mask = saved_gfp;
p = mempool_alloc(&bs->bio_pool, gfp_mask);
}
if (unlikely(!p))
return NULL;
if (!mempool_is_saturated(&bs->bio_pool))
opf &= ~REQ_ALLOC_CACHE;
bio = p + bs->front_pad;
if (nr_vecs > BIO_INLINE_VECS) {
struct bio_vec *bvl = NULL;
bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
if (!bvl && gfp_mask != saved_gfp) {
punt_bios_to_rescuer(bs);
gfp_mask = saved_gfp;
bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
}
if (unlikely(!bvl))
goto err_free;
bio_init(bio, bdev, bvl, nr_vecs, opf);
} else if (nr_vecs) {
bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
} else {
bio_init(bio, bdev, NULL, 0, opf);
}
bio->bi_pool = bs;
return bio;
err_free:
mempool_free(p, &bs->bio_pool);
return NULL;
}
EXPORT_SYMBOL(bio_alloc_bioset);
/**
* bio_kmalloc - kmalloc a bio
* @nr_vecs: number of bio_vecs to allocate
* @gfp_mask: the GFP_* mask given to the slab allocator
*
* Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
* using bio_init() before use. To free a bio returned from this function use
* kfree() after calling bio_uninit(). A bio returned from this function can
* be reused by calling bio_uninit() before calling bio_init() again.
*
* Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
* function are not backed by a mempool can fail. Do not use this function
* for allocations in the file system I/O path.
*
* Returns: Pointer to new bio on success, NULL on failure.
*/
struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
{
struct bio *bio;
if (nr_vecs > UIO_MAXIOV)
return NULL;
return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
}
EXPORT_SYMBOL(bio_kmalloc);
void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
{
struct bio_vec bv;
struct bvec_iter iter;
__bio_for_each_segment(bv, bio, iter, start)
memzero_bvec(&bv);
}
EXPORT_SYMBOL(zero_fill_bio_iter);
/**
* bio_truncate - truncate the bio to small size of @new_size
* @bio: the bio to be truncated
* @new_size: new size for truncating the bio
*
* Description:
* Truncate the bio to new size of @new_size. If bio_op(bio) is
* REQ_OP_READ, zero the truncated part. This function should only
* be used for handling corner cases, such as bio eod.
*/
static void bio_truncate(struct bio *bio, unsigned new_size)
{
struct bio_vec bv;
struct bvec_iter iter;
unsigned int done = 0;
bool truncated = false;
if (new_size >= bio->bi_iter.bi_size)
return;
if (bio_op(bio) != REQ_OP_READ)
goto exit;
bio_for_each_segment(bv, bio, iter) {
if (done + bv.bv_len > new_size) {
unsigned offset;
if (!truncated)
offset = new_size - done;
else
offset = 0;
zero_user(bv.bv_page, bv.bv_offset + offset,
bv.bv_len - offset);
truncated = true;
}
done += bv.bv_len;
}
exit:
/*
* Don't touch bvec table here and make it really immutable, since
* fs bio user has to retrieve all pages via bio_for_each_segment_all
* in its .end_bio() callback.
*
* It is enough to truncate bio by updating .bi_size since we can make
* correct bvec with the updated .bi_size for drivers.
*/
bio->bi_iter.bi_size = new_size;
}
/**
* guard_bio_eod - truncate a BIO to fit the block device
* @bio: bio to truncate
*
* This allows us to do IO even on the odd last sectors of a device, even if the
* block size is some multiple of the physical sector size.
*
* We'll just truncate the bio to the size of the device, and clear the end of
* the buffer head manually. Truly out-of-range accesses will turn into actual
* I/O errors, this only handles the "we need to be able to do I/O at the final
* sector" case.
*/
void guard_bio_eod(struct bio *bio)
{
sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
if (!maxsector)
return;
/*
* If the *whole* IO is past the end of the device,
* let it through, and the IO layer will turn it into
* an EIO.
*/
if (unlikely(bio->bi_iter.bi_sector >= maxsector))
return;
maxsector -= bio->bi_iter.bi_sector;
if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
return;
bio_truncate(bio, maxsector << 9);
}
static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
unsigned int nr)
{
unsigned int i = 0;
struct bio *bio;
while ((bio = cache->free_list) != NULL) {
cache->free_list = bio->bi_next;
cache->nr--;
bio_free(bio);
if (++i == nr)
break;
}
return i;
}
static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
unsigned int nr)
{
nr -= __bio_alloc_cache_prune(cache, nr);
if (!READ_ONCE(cache->free_list)) {
bio_alloc_irq_cache_splice(cache);
__bio_alloc_cache_prune(cache, nr);
}
}
static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
{
struct bio_set *bs;
bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
if (bs->cache) {
struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
bio_alloc_cache_prune(cache, -1U);
}
return 0;
}
static void bio_alloc_cache_destroy(struct bio_set *bs)
{
int cpu;
if (!bs->cache)
return;
cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
for_each_possible_cpu(cpu) {
struct bio_alloc_cache *cache;
cache = per_cpu_ptr(bs->cache, cpu);
bio_alloc_cache_prune(cache, -1U);
}
free_percpu(bs->cache);
bs->cache = NULL;
}
static inline void bio_put_percpu_cache(struct bio *bio)
{
struct bio_alloc_cache *cache;
cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
goto out_free;
if (in_task()) {
bio_uninit(bio);
bio->bi_next = cache->free_list;
/* Not necessary but helps not to iopoll already freed bios */
bio->bi_bdev = NULL;
cache->free_list = bio;
cache->nr++;
} else if (in_hardirq()) {
lockdep_assert_irqs_disabled();
bio_uninit(bio);
bio->bi_next = cache->free_list_irq;
cache->free_list_irq = bio;
cache->nr_irq++;
} else {
goto out_free;
}
put_cpu();
return;
out_free:
put_cpu();
bio_free(bio);
}
/**
* bio_put - release a reference to a bio
* @bio: bio to release reference to
*
* Description:
* Put a reference to a &struct bio, either one you have gotten with
* bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
**/
void bio_put(struct bio *bio)
{
if (unlikely(bio_flagged(bio, BIO_REFFED))) {
BUG_ON(!atomic_read(&bio->__bi_cnt));
if (!atomic_dec_and_test(&bio->__bi_cnt))
return;
}
if (bio->bi_opf & REQ_ALLOC_CACHE)
bio_put_percpu_cache(bio);
else
bio_free(bio);
}
EXPORT_SYMBOL(bio_put);
static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
{
bio_set_flag(bio, BIO_CLONED);
bio->bi_ioprio = bio_src->bi_ioprio;
bio->bi_write_hint = bio_src->bi_write_hint;
bio->bi_iter = bio_src->bi_iter;
if (bio->bi_bdev) {
if (bio->bi_bdev == bio_src->bi_bdev &&
bio_flagged(bio_src, BIO_REMAPPED))
bio_set_flag(bio, BIO_REMAPPED);
bio_clone_blkg_association(bio, bio_src);
}
if (bio_crypt_clone(bio, bio_src, gfp) < 0)
return -ENOMEM;
if (bio_integrity(bio_src) &&
bio_integrity_clone(bio, bio_src, gfp) < 0)
return -ENOMEM;
return 0;
}
/**
* bio_alloc_clone - clone a bio that shares the original bio's biovec
* @bdev: block_device to clone onto
* @bio_src: bio to clone from
* @gfp: allocation priority
* @bs: bio_set to allocate from
*
* Allocate a new bio that is a clone of @bio_src. The caller owns the returned
* bio, but not the actual data it points to.
*
* The caller must ensure that the return bio is not freed before @bio_src.
*/
struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
gfp_t gfp, struct bio_set *bs)
{
struct bio *bio;
bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
if (!bio)
return NULL;
if (__bio_clone(bio, bio_src, gfp) < 0) {
bio_put(bio);
return NULL;
}
bio->bi_io_vec = bio_src->bi_io_vec;
return bio;
}
EXPORT_SYMBOL(bio_alloc_clone);
/**
* bio_init_clone - clone a bio that shares the original bio's biovec
* @bdev: block_device to clone onto
* @bio: bio to clone into
* @bio_src: bio to clone from
* @gfp: allocation priority
*
* Initialize a new bio in caller provided memory that is a clone of @bio_src.
* The caller owns the returned bio, but not the actual data it points to.
*
* The caller must ensure that @bio_src is not freed before @bio.
*/
int bio_init_clone(struct block_device *bdev, struct bio *bio,
struct bio *bio_src, gfp_t gfp)
{
int ret;
bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
ret = __bio_clone(bio, bio_src, gfp);
if (ret)
bio_uninit(bio);
return ret;
}
EXPORT_SYMBOL(bio_init_clone);
/**
* bio_full - check if the bio is full
* @bio: bio to check
* @len: length of one segment to be added
*
* Return true if @bio is full and one segment with @len bytes can't be
* added to the bio, otherwise return false
*/
static inline bool bio_full(struct bio *bio, unsigned len)
{
if (bio->bi_vcnt >= bio->bi_max_vecs)
return true;
if (bio->bi_iter.bi_size > UINT_MAX - len)
return true;
return false;
}
static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
unsigned int len, unsigned int off, bool *same_page)
{
size_t bv_end = bv->bv_offset + bv->bv_len;
phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
phys_addr_t page_addr = page_to_phys(page);
if (vec_end_addr + 1 != page_addr + off)
return false;
if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
return false;
if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
return false;
*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
if (!*same_page) {
if (IS_ENABLED(CONFIG_KMSAN))
return false;
if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
return false;
}
bv->bv_len += len;
return true;
}
/*
* Try to merge a page into a segment, while obeying the hardware segment
* size limit. This is not for normal read/write bios, but for passthrough
* or Zone Append operations that we can't split.
*/
bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
struct page *page, unsigned len, unsigned offset,
bool *same_page)
{
unsigned long mask = queue_segment_boundary(q);
phys_addr_t addr1 = bvec_phys(bv);
phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
if ((addr1 | mask) != (addr2 | mask))
return false;
if (len > queue_max_segment_size(q) - bv->bv_len)
return false;
return bvec_try_merge_page(bv, page, len, offset, same_page);
}
/**
* bio_add_hw_page - attempt to add a page to a bio with hw constraints
* @q: the target queue
* @bio: destination bio
* @page: page to add
* @len: vec entry length
* @offset: vec entry offset
* @max_sectors: maximum number of sectors that can be added
* @same_page: return if the segment has been merged inside the same page
*
* Add a page to a bio while respecting the hardware max_sectors, max_segment
* and gap limitations.
*/
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
struct page *page, unsigned int len, unsigned int offset,
unsigned int max_sectors, bool *same_page)
{
unsigned int max_size = max_sectors << SECTOR_SHIFT;
if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
return 0;
len = min3(len, max_size, queue_max_segment_size(q));
if (len > max_size - bio->bi_iter.bi_size)
return 0;
if (bio->bi_vcnt > 0) {
struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
if (bvec_try_merge_hw_page(q, bv, page, len, offset,
same_page)) {
bio->bi_iter.bi_size += len;
return len;
}