forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 1
/
bitmap.c
875 lines (790 loc) · 26.4 KB
/
bitmap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
// SPDX-License-Identifier: GPL-2.0-only
/*
* lib/bitmap.c
* Helper functions for bitmap.h.
*/
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/ctype.h>
#include <linux/device.h>
#include <linux/export.h>
#include <linux/slab.h>
/**
* DOC: bitmap introduction
*
* bitmaps provide an array of bits, implemented using an
* array of unsigned longs. The number of valid bits in a
* given bitmap does _not_ need to be an exact multiple of
* BITS_PER_LONG.
*
* The possible unused bits in the last, partially used word
* of a bitmap are 'don't care'. The implementation makes
* no particular effort to keep them zero. It ensures that
* their value will not affect the results of any operation.
* The bitmap operations that return Boolean (bitmap_empty,
* for example) or scalar (bitmap_weight, for example) results
* carefully filter out these unused bits from impacting their
* results.
*
* The byte ordering of bitmaps is more natural on little
* endian architectures. See the big-endian headers
* include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
* for the best explanations of this ordering.
*/
bool __bitmap_equal(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (bitmap1[k] != bitmap2[k])
return false;
if (bits % BITS_PER_LONG)
if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
return false;
return true;
}
EXPORT_SYMBOL(__bitmap_equal);
bool __bitmap_or_equal(const unsigned long *bitmap1,
const unsigned long *bitmap2,
const unsigned long *bitmap3,
unsigned int bits)
{
unsigned int k, lim = bits / BITS_PER_LONG;
unsigned long tmp;
for (k = 0; k < lim; ++k) {
if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
return false;
}
if (!(bits % BITS_PER_LONG))
return true;
tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
}
void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
{
unsigned int k, lim = BITS_TO_LONGS(bits);
for (k = 0; k < lim; ++k)
dst[k] = ~src[k];
}
EXPORT_SYMBOL(__bitmap_complement);
/**
* __bitmap_shift_right - logical right shift of the bits in a bitmap
* @dst : destination bitmap
* @src : source bitmap
* @shift : shift by this many bits
* @nbits : bitmap size, in bits
*
* Shifting right (dividing) means moving bits in the MS -> LS bit
* direction. Zeros are fed into the vacated MS positions and the
* LS bits shifted off the bottom are lost.
*/
void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
unsigned shift, unsigned nbits)
{
unsigned k, lim = BITS_TO_LONGS(nbits);
unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
for (k = 0; off + k < lim; ++k) {
unsigned long upper, lower;
/*
* If shift is not word aligned, take lower rem bits of
* word above and make them the top rem bits of result.
*/
if (!rem || off + k + 1 >= lim)
upper = 0;
else {
upper = src[off + k + 1];
if (off + k + 1 == lim - 1)
upper &= mask;
upper <<= (BITS_PER_LONG - rem);
}
lower = src[off + k];
if (off + k == lim - 1)
lower &= mask;
lower >>= rem;
dst[k] = lower | upper;
}
if (off)
memset(&dst[lim - off], 0, off*sizeof(unsigned long));
}
EXPORT_SYMBOL(__bitmap_shift_right);
/**
* __bitmap_shift_left - logical left shift of the bits in a bitmap
* @dst : destination bitmap
* @src : source bitmap
* @shift : shift by this many bits
* @nbits : bitmap size, in bits
*
* Shifting left (multiplying) means moving bits in the LS -> MS
* direction. Zeros are fed into the vacated LS bit positions
* and those MS bits shifted off the top are lost.
*/
void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
unsigned int shift, unsigned int nbits)
{
int k;
unsigned int lim = BITS_TO_LONGS(nbits);
unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
for (k = lim - off - 1; k >= 0; --k) {
unsigned long upper, lower;
/*
* If shift is not word aligned, take upper rem bits of
* word below and make them the bottom rem bits of result.
*/
if (rem && k > 0)
lower = src[k - 1] >> (BITS_PER_LONG - rem);
else
lower = 0;
upper = src[k] << rem;
dst[k + off] = lower | upper;
}
if (off)
memset(dst, 0, off*sizeof(unsigned long));
}
EXPORT_SYMBOL(__bitmap_shift_left);
/**
* bitmap_cut() - remove bit region from bitmap and right shift remaining bits
* @dst: destination bitmap, might overlap with src
* @src: source bitmap
* @first: start bit of region to be removed
* @cut: number of bits to remove
* @nbits: bitmap size, in bits
*
* Set the n-th bit of @dst iff the n-th bit of @src is set and
* n is less than @first, or the m-th bit of @src is set for any
* m such that @first <= n < nbits, and m = n + @cut.
*
* In pictures, example for a big-endian 32-bit architecture:
*
* The @src bitmap is::
*
* 31 63
* | |
* 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
* | | | |
* 16 14 0 32
*
* if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
*
* 31 63
* | |
* 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
* | | |
* 14 (bit 17 0 32
* from @src)
*
* Note that @dst and @src might overlap partially or entirely.
*
* This is implemented in the obvious way, with a shift and carry
* step for each moved bit. Optimisation is left as an exercise
* for the compiler.
*/
void bitmap_cut(unsigned long *dst, const unsigned long *src,
unsigned int first, unsigned int cut, unsigned int nbits)
{
unsigned int len = BITS_TO_LONGS(nbits);
unsigned long keep = 0, carry;
int i;
if (first % BITS_PER_LONG) {
keep = src[first / BITS_PER_LONG] &
(~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
}
memmove(dst, src, len * sizeof(*dst));
while (cut--) {
for (i = first / BITS_PER_LONG; i < len; i++) {
if (i < len - 1)
carry = dst[i + 1] & 1UL;
else
carry = 0;
dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
}
}
dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
dst[first / BITS_PER_LONG] |= keep;
}
EXPORT_SYMBOL(bitmap_cut);
bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k;
unsigned int lim = bits/BITS_PER_LONG;
unsigned long result = 0;
for (k = 0; k < lim; k++)
result |= (dst[k] = bitmap1[k] & bitmap2[k]);
if (bits % BITS_PER_LONG)
result |= (dst[k] = bitmap1[k] & bitmap2[k] &
BITMAP_LAST_WORD_MASK(bits));
return result != 0;
}
EXPORT_SYMBOL(__bitmap_and);
void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k;
unsigned int nr = BITS_TO_LONGS(bits);
for (k = 0; k < nr; k++)
dst[k] = bitmap1[k] | bitmap2[k];
}
EXPORT_SYMBOL(__bitmap_or);
void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k;
unsigned int nr = BITS_TO_LONGS(bits);
for (k = 0; k < nr; k++)
dst[k] = bitmap1[k] ^ bitmap2[k];
}
EXPORT_SYMBOL(__bitmap_xor);
bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k;
unsigned int lim = bits/BITS_PER_LONG;
unsigned long result = 0;
for (k = 0; k < lim; k++)
result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
if (bits % BITS_PER_LONG)
result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
BITMAP_LAST_WORD_MASK(bits));
return result != 0;
}
EXPORT_SYMBOL(__bitmap_andnot);
void __bitmap_replace(unsigned long *dst,
const unsigned long *old, const unsigned long *new,
const unsigned long *mask, unsigned int nbits)
{
unsigned int k;
unsigned int nr = BITS_TO_LONGS(nbits);
for (k = 0; k < nr; k++)
dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
}
EXPORT_SYMBOL(__bitmap_replace);
bool __bitmap_intersects(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (bitmap1[k] & bitmap2[k])
return true;
if (bits % BITS_PER_LONG)
if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
return true;
return false;
}
EXPORT_SYMBOL(__bitmap_intersects);
bool __bitmap_subset(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (bitmap1[k] & ~bitmap2[k])
return false;
if (bits % BITS_PER_LONG)
if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
return false;
return true;
}
EXPORT_SYMBOL(__bitmap_subset);
#define BITMAP_WEIGHT(FETCH, bits) \
({ \
unsigned int __bits = (bits), idx, w = 0; \
\
for (idx = 0; idx < __bits / BITS_PER_LONG; idx++) \
w += hweight_long(FETCH); \
\
if (__bits % BITS_PER_LONG) \
w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits)); \
\
w; \
})
unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
{
return BITMAP_WEIGHT(bitmap[idx], bits);
}
EXPORT_SYMBOL(__bitmap_weight);
unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
}
EXPORT_SYMBOL(__bitmap_weight_and);
void __bitmap_set(unsigned long *map, unsigned int start, int len)
{
unsigned long *p = map + BIT_WORD(start);
const unsigned int size = start + len;
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
while (len - bits_to_set >= 0) {
*p |= mask_to_set;
len -= bits_to_set;
bits_to_set = BITS_PER_LONG;
mask_to_set = ~0UL;
p++;
}
if (len) {
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
*p |= mask_to_set;
}
}
EXPORT_SYMBOL(__bitmap_set);
void __bitmap_clear(unsigned long *map, unsigned int start, int len)
{
unsigned long *p = map + BIT_WORD(start);
const unsigned int size = start + len;
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
while (len - bits_to_clear >= 0) {
*p &= ~mask_to_clear;
len -= bits_to_clear;
bits_to_clear = BITS_PER_LONG;
mask_to_clear = ~0UL;
p++;
}
if (len) {
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
*p &= ~mask_to_clear;
}
}
EXPORT_SYMBOL(__bitmap_clear);
/**
* bitmap_find_next_zero_area_off - find a contiguous aligned zero area
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @align_mask: Alignment mask for zero area
* @align_offset: Alignment offset for zero area.
*
* The @align_mask should be one less than a power of 2; the effect is that
* the bit offset of all zero areas this function finds plus @align_offset
* is multiple of that power of 2.
*/
unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
unsigned long size,
unsigned long start,
unsigned int nr,
unsigned long align_mask,
unsigned long align_offset)
{
unsigned long index, end, i;
again:
index = find_next_zero_bit(map, size, start);
/* Align allocation */
index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
end = index + nr;
if (end > size)
return end;
i = find_next_bit(map, end, index);
if (i < end) {
start = i + 1;
goto again;
}
return index;
}
EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
/**
* bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
* @buf: pointer to a bitmap
* @pos: a bit position in @buf (0 <= @pos < @nbits)
* @nbits: number of valid bit positions in @buf
*
* Map the bit at position @pos in @buf (of length @nbits) to the
* ordinal of which set bit it is. If it is not set or if @pos
* is not a valid bit position, map to -1.
*
* If for example, just bits 4 through 7 are set in @buf, then @pos
* values 4 through 7 will get mapped to 0 through 3, respectively,
* and other @pos values will get mapped to -1. When @pos value 7
* gets mapped to (returns) @ord value 3 in this example, that means
* that bit 7 is the 3rd (starting with 0th) set bit in @buf.
*
* The bit positions 0 through @bits are valid positions in @buf.
*/
static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
{
if (pos >= nbits || !test_bit(pos, buf))
return -1;
return bitmap_weight(buf, pos);
}
/**
* bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
* @dst: remapped result
* @src: subset to be remapped
* @old: defines domain of map
* @new: defines range of map
* @nbits: number of bits in each of these bitmaps
*
* Let @old and @new define a mapping of bit positions, such that
* whatever position is held by the n-th set bit in @old is mapped
* to the n-th set bit in @new. In the more general case, allowing
* for the possibility that the weight 'w' of @new is less than the
* weight of @old, map the position of the n-th set bit in @old to
* the position of the m-th set bit in @new, where m == n % w.
*
* If either of the @old and @new bitmaps are empty, or if @src and
* @dst point to the same location, then this routine copies @src
* to @dst.
*
* The positions of unset bits in @old are mapped to themselves
* (the identity map).
*
* Apply the above specified mapping to @src, placing the result in
* @dst, clearing any bits previously set in @dst.
*
* For example, lets say that @old has bits 4 through 7 set, and
* @new has bits 12 through 15 set. This defines the mapping of bit
* position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
* bit positions unchanged. So if say @src comes into this routine
* with bits 1, 5 and 7 set, then @dst should leave with bits 1,
* 13 and 15 set.
*/
void bitmap_remap(unsigned long *dst, const unsigned long *src,
const unsigned long *old, const unsigned long *new,
unsigned int nbits)
{
unsigned int oldbit, w;
if (dst == src) /* following doesn't handle inplace remaps */
return;
bitmap_zero(dst, nbits);
w = bitmap_weight(new, nbits);
for_each_set_bit(oldbit, src, nbits) {
int n = bitmap_pos_to_ord(old, oldbit, nbits);
if (n < 0 || w == 0)
set_bit(oldbit, dst); /* identity map */
else
set_bit(find_nth_bit(new, nbits, n % w), dst);
}
}
EXPORT_SYMBOL(bitmap_remap);
/**
* bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
* @oldbit: bit position to be mapped
* @old: defines domain of map
* @new: defines range of map
* @bits: number of bits in each of these bitmaps
*
* Let @old and @new define a mapping of bit positions, such that
* whatever position is held by the n-th set bit in @old is mapped
* to the n-th set bit in @new. In the more general case, allowing
* for the possibility that the weight 'w' of @new is less than the
* weight of @old, map the position of the n-th set bit in @old to
* the position of the m-th set bit in @new, where m == n % w.
*
* The positions of unset bits in @old are mapped to themselves
* (the identity map).
*
* Apply the above specified mapping to bit position @oldbit, returning
* the new bit position.
*
* For example, lets say that @old has bits 4 through 7 set, and
* @new has bits 12 through 15 set. This defines the mapping of bit
* position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
* bit positions unchanged. So if say @oldbit is 5, then this routine
* returns 13.
*/
int bitmap_bitremap(int oldbit, const unsigned long *old,
const unsigned long *new, int bits)
{
int w = bitmap_weight(new, bits);
int n = bitmap_pos_to_ord(old, oldbit, bits);
if (n < 0 || w == 0)
return oldbit;
else
return find_nth_bit(new, bits, n % w);
}
EXPORT_SYMBOL(bitmap_bitremap);
#ifdef CONFIG_NUMA
/**
* bitmap_onto - translate one bitmap relative to another
* @dst: resulting translated bitmap
* @orig: original untranslated bitmap
* @relmap: bitmap relative to which translated
* @bits: number of bits in each of these bitmaps
*
* Set the n-th bit of @dst iff there exists some m such that the
* n-th bit of @relmap is set, the m-th bit of @orig is set, and
* the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
* (If you understood the previous sentence the first time your
* read it, you're overqualified for your current job.)
*
* In other words, @orig is mapped onto (surjectively) @dst,
* using the map { <n, m> | the n-th bit of @relmap is the
* m-th set bit of @relmap }.
*
* Any set bits in @orig above bit number W, where W is the
* weight of (number of set bits in) @relmap are mapped nowhere.
* In particular, if for all bits m set in @orig, m >= W, then
* @dst will end up empty. In situations where the possibility
* of such an empty result is not desired, one way to avoid it is
* to use the bitmap_fold() operator, below, to first fold the
* @orig bitmap over itself so that all its set bits x are in the
* range 0 <= x < W. The bitmap_fold() operator does this by
* setting the bit (m % W) in @dst, for each bit (m) set in @orig.
*
* Example [1] for bitmap_onto():
* Let's say @relmap has bits 30-39 set, and @orig has bits
* 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
* @dst will have bits 31, 33, 35, 37 and 39 set.
*
* When bit 0 is set in @orig, it means turn on the bit in
* @dst corresponding to whatever is the first bit (if any)
* that is turned on in @relmap. Since bit 0 was off in the
* above example, we leave off that bit (bit 30) in @dst.
*
* When bit 1 is set in @orig (as in the above example), it
* means turn on the bit in @dst corresponding to whatever
* is the second bit that is turned on in @relmap. The second
* bit in @relmap that was turned on in the above example was
* bit 31, so we turned on bit 31 in @dst.
*
* Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
* because they were the 4th, 6th, 8th and 10th set bits
* set in @relmap, and the 4th, 6th, 8th and 10th bits of
* @orig (i.e. bits 3, 5, 7 and 9) were also set.
*
* When bit 11 is set in @orig, it means turn on the bit in
* @dst corresponding to whatever is the twelfth bit that is
* turned on in @relmap. In the above example, there were
* only ten bits turned on in @relmap (30..39), so that bit
* 11 was set in @orig had no affect on @dst.
*
* Example [2] for bitmap_fold() + bitmap_onto():
* Let's say @relmap has these ten bits set::
*
* 40 41 42 43 45 48 53 61 74 95
*
* (for the curious, that's 40 plus the first ten terms of the
* Fibonacci sequence.)
*
* Further lets say we use the following code, invoking
* bitmap_fold() then bitmap_onto, as suggested above to
* avoid the possibility of an empty @dst result::
*
* unsigned long *tmp; // a temporary bitmap's bits
*
* bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
* bitmap_onto(dst, tmp, relmap, bits);
*
* Then this table shows what various values of @dst would be, for
* various @orig's. I list the zero-based positions of each set bit.
* The tmp column shows the intermediate result, as computed by
* using bitmap_fold() to fold the @orig bitmap modulo ten
* (the weight of @relmap):
*
* =============== ============== =================
* @orig tmp @dst
* 0 0 40
* 1 1 41
* 9 9 95
* 10 0 40 [#f1]_
* 1 3 5 7 1 3 5 7 41 43 48 61
* 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
* 0 9 18 27 0 9 8 7 40 61 74 95
* 0 10 20 30 0 40
* 0 11 22 33 0 1 2 3 40 41 42 43
* 0 12 24 36 0 2 4 6 40 42 45 53
* 78 102 211 1 2 8 41 42 74 [#f1]_
* =============== ============== =================
*
* .. [#f1]
*
* For these marked lines, if we hadn't first done bitmap_fold()
* into tmp, then the @dst result would have been empty.
*
* If either of @orig or @relmap is empty (no set bits), then @dst
* will be returned empty.
*
* If (as explained above) the only set bits in @orig are in positions
* m where m >= W, (where W is the weight of @relmap) then @dst will
* once again be returned empty.
*
* All bits in @dst not set by the above rule are cleared.
*/
void bitmap_onto(unsigned long *dst, const unsigned long *orig,
const unsigned long *relmap, unsigned int bits)
{
unsigned int n, m; /* same meaning as in above comment */
if (dst == orig) /* following doesn't handle inplace mappings */
return;
bitmap_zero(dst, bits);
/*
* The following code is a more efficient, but less
* obvious, equivalent to the loop:
* for (m = 0; m < bitmap_weight(relmap, bits); m++) {
* n = find_nth_bit(orig, bits, m);
* if (test_bit(m, orig))
* set_bit(n, dst);
* }
*/
m = 0;
for_each_set_bit(n, relmap, bits) {
/* m == bitmap_pos_to_ord(relmap, n, bits) */
if (test_bit(m, orig))
set_bit(n, dst);
m++;
}
}
/**
* bitmap_fold - fold larger bitmap into smaller, modulo specified size
* @dst: resulting smaller bitmap
* @orig: original larger bitmap
* @sz: specified size
* @nbits: number of bits in each of these bitmaps
*
* For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
* Clear all other bits in @dst. See further the comment and
* Example [2] for bitmap_onto() for why and how to use this.
*/
void bitmap_fold(unsigned long *dst, const unsigned long *orig,
unsigned int sz, unsigned int nbits)
{
unsigned int oldbit;
if (dst == orig) /* following doesn't handle inplace mappings */
return;
bitmap_zero(dst, nbits);
for_each_set_bit(oldbit, orig, nbits)
set_bit(oldbit % sz, dst);
}
#endif /* CONFIG_NUMA */
unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
{
return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
flags);
}
EXPORT_SYMBOL(bitmap_alloc);
unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
{
return bitmap_alloc(nbits, flags | __GFP_ZERO);
}
EXPORT_SYMBOL(bitmap_zalloc);
unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
{
return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
flags, node);
}
EXPORT_SYMBOL(bitmap_alloc_node);
unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
{
return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
}
EXPORT_SYMBOL(bitmap_zalloc_node);
void bitmap_free(const unsigned long *bitmap)
{
kfree(bitmap);
}
EXPORT_SYMBOL(bitmap_free);
static void devm_bitmap_free(void *data)
{
unsigned long *bitmap = data;
bitmap_free(bitmap);
}
unsigned long *devm_bitmap_alloc(struct device *dev,
unsigned int nbits, gfp_t flags)
{
unsigned long *bitmap;
int ret;
bitmap = bitmap_alloc(nbits, flags);
if (!bitmap)
return NULL;
ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
if (ret)
return NULL;
return bitmap;
}
EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
unsigned long *devm_bitmap_zalloc(struct device *dev,
unsigned int nbits, gfp_t flags)
{
return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
}
EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
#if BITS_PER_LONG == 64
/**
* bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
* @bitmap: array of unsigned longs, the destination bitmap
* @buf: array of u32 (in host byte order), the source bitmap
* @nbits: number of bits in @bitmap
*/
void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
{
unsigned int i, halfwords;
halfwords = DIV_ROUND_UP(nbits, 32);
for (i = 0; i < halfwords; i++) {
bitmap[i/2] = (unsigned long) buf[i];
if (++i < halfwords)
bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
}
/* Clear tail bits in last word beyond nbits. */
if (nbits % BITS_PER_LONG)
bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
}
EXPORT_SYMBOL(bitmap_from_arr32);
/**
* bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
* @buf: array of u32 (in host byte order), the dest bitmap
* @bitmap: array of unsigned longs, the source bitmap
* @nbits: number of bits in @bitmap
*/
void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
{
unsigned int i, halfwords;
halfwords = DIV_ROUND_UP(nbits, 32);
for (i = 0; i < halfwords; i++) {
buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
if (++i < halfwords)
buf[i] = (u32) (bitmap[i/2] >> 32);
}
/* Clear tail bits in last element of array beyond nbits. */
if (nbits % BITS_PER_LONG)
buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
}
EXPORT_SYMBOL(bitmap_to_arr32);
#endif
#if BITS_PER_LONG == 32
/**
* bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
* @bitmap: array of unsigned longs, the destination bitmap
* @buf: array of u64 (in host byte order), the source bitmap
* @nbits: number of bits in @bitmap
*/
void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
{
int n;
for (n = nbits; n > 0; n -= 64) {
u64 val = *buf++;
*bitmap++ = val;
if (n > 32)
*bitmap++ = val >> 32;
}
/*
* Clear tail bits in the last word beyond nbits.
*
* Negative index is OK because here we point to the word next
* to the last word of the bitmap, except for nbits == 0, which
* is tested implicitly.
*/
if (nbits % BITS_PER_LONG)
bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
}
EXPORT_SYMBOL(bitmap_from_arr64);
/**
* bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
* @buf: array of u64 (in host byte order), the dest bitmap
* @bitmap: array of unsigned longs, the source bitmap
* @nbits: number of bits in @bitmap
*/
void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
{
const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
while (bitmap < end) {
*buf = *bitmap++;
if (bitmap < end)
*buf |= (u64)(*bitmap++) << 32;
buf++;
}
/* Clear tail bits in the last element of array beyond nbits. */
if (nbits % 64)
buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
}
EXPORT_SYMBOL(bitmap_to_arr64);
#endif