forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 1
/
memory-failure.c
2841 lines (2499 loc) · 75 KB
/
memory-failure.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2008, 2009 Intel Corporation
* Authors: Andi Kleen, Fengguang Wu
*
* High level machine check handler. Handles pages reported by the
* hardware as being corrupted usually due to a multi-bit ECC memory or cache
* failure.
*
* In addition there is a "soft offline" entry point that allows stop using
* not-yet-corrupted-by-suspicious pages without killing anything.
*
* Handles page cache pages in various states. The tricky part
* here is that we can access any page asynchronously in respect to
* other VM users, because memory failures could happen anytime and
* anywhere. This could violate some of their assumptions. This is why
* this code has to be extremely careful. Generally it tries to use
* normal locking rules, as in get the standard locks, even if that means
* the error handling takes potentially a long time.
*
* It can be very tempting to add handling for obscure cases here.
* In general any code for handling new cases should only be added iff:
* - You know how to test it.
* - You have a test that can be added to mce-test
* https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
* - The case actually shows up as a frequent (top 10) page state in
* tools/mm/page-types when running a real workload.
*
* There are several operations here with exponential complexity because
* of unsuitable VM data structures. For example the operation to map back
* from RMAP chains to processes has to walk the complete process list and
* has non linear complexity with the number. But since memory corruptions
* are rare we hope to get away with this. This avoids impacting the core
* VM.
*/
#define pr_fmt(fmt) "Memory failure: " fmt
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/dax.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/export.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
#include <linux/migrate.h>
#include <linux/slab.h>
#include <linux/swapops.h>
#include <linux/hugetlb.h>
#include <linux/memory_hotplug.h>
#include <linux/mm_inline.h>
#include <linux/memremap.h>
#include <linux/kfifo.h>
#include <linux/ratelimit.h>
#include <linux/pagewalk.h>
#include <linux/shmem_fs.h>
#include <linux/sysctl.h>
#include "swap.h"
#include "internal.h"
#include "ras/ras_event.h"
static int sysctl_memory_failure_early_kill __read_mostly;
static int sysctl_memory_failure_recovery __read_mostly = 1;
static int sysctl_enable_soft_offline __read_mostly = 1;
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
static bool hw_memory_failure __read_mostly = false;
static DEFINE_MUTEX(mf_mutex);
void num_poisoned_pages_inc(unsigned long pfn)
{
atomic_long_inc(&num_poisoned_pages);
memblk_nr_poison_inc(pfn);
}
void num_poisoned_pages_sub(unsigned long pfn, long i)
{
atomic_long_sub(i, &num_poisoned_pages);
if (pfn != -1UL)
memblk_nr_poison_sub(pfn, i);
}
/**
* MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
* @_name: name of the file in the per NUMA sysfs directory.
*/
#define MF_ATTR_RO(_name) \
static ssize_t _name##_show(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct memory_failure_stats *mf_stats = \
&NODE_DATA(dev->id)->mf_stats; \
return sprintf(buf, "%lu\n", mf_stats->_name); \
} \
static DEVICE_ATTR_RO(_name)
MF_ATTR_RO(total);
MF_ATTR_RO(ignored);
MF_ATTR_RO(failed);
MF_ATTR_RO(delayed);
MF_ATTR_RO(recovered);
static struct attribute *memory_failure_attr[] = {
&dev_attr_total.attr,
&dev_attr_ignored.attr,
&dev_attr_failed.attr,
&dev_attr_delayed.attr,
&dev_attr_recovered.attr,
NULL,
};
const struct attribute_group memory_failure_attr_group = {
.name = "memory_failure",
.attrs = memory_failure_attr,
};
static struct ctl_table memory_failure_table[] = {
{
.procname = "memory_failure_early_kill",
.data = &sysctl_memory_failure_early_kill,
.maxlen = sizeof(sysctl_memory_failure_early_kill),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{
.procname = "memory_failure_recovery",
.data = &sysctl_memory_failure_recovery,
.maxlen = sizeof(sysctl_memory_failure_recovery),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{
.procname = "enable_soft_offline",
.data = &sysctl_enable_soft_offline,
.maxlen = sizeof(sysctl_enable_soft_offline),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
}
};
/*
* Return values:
* 1: the page is dissolved (if needed) and taken off from buddy,
* 0: the page is dissolved (if needed) and not taken off from buddy,
* < 0: failed to dissolve.
*/
static int __page_handle_poison(struct page *page)
{
int ret;
/*
* zone_pcp_disable() can't be used here. It will
* hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
* cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
* optimization is enabled. This will break current lock dependency
* chain and leads to deadlock.
* Disabling pcp before dissolving the page was a deterministic
* approach because we made sure that those pages cannot end up in any
* PCP list. Draining PCP lists expels those pages to the buddy system,
* but nothing guarantees that those pages do not get back to a PCP
* queue if we need to refill those.
*/
ret = dissolve_free_hugetlb_folio(page_folio(page));
if (!ret) {
drain_all_pages(page_zone(page));
ret = take_page_off_buddy(page);
}
return ret;
}
static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
{
if (hugepage_or_freepage) {
/*
* Doing this check for free pages is also fine since
* dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
*/
if (__page_handle_poison(page) <= 0)
/*
* We could fail to take off the target page from buddy
* for example due to racy page allocation, but that's
* acceptable because soft-offlined page is not broken
* and if someone really want to use it, they should
* take it.
*/
return false;
}
SetPageHWPoison(page);
if (release)
put_page(page);
page_ref_inc(page);
num_poisoned_pages_inc(page_to_pfn(page));
return true;
}
#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
u32 hwpoison_filter_enable = 0;
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
static int hwpoison_filter_dev(struct page *p)
{
struct folio *folio = page_folio(p);
struct address_space *mapping;
dev_t dev;
if (hwpoison_filter_dev_major == ~0U &&
hwpoison_filter_dev_minor == ~0U)
return 0;
mapping = folio_mapping(folio);
if (mapping == NULL || mapping->host == NULL)
return -EINVAL;
dev = mapping->host->i_sb->s_dev;
if (hwpoison_filter_dev_major != ~0U &&
hwpoison_filter_dev_major != MAJOR(dev))
return -EINVAL;
if (hwpoison_filter_dev_minor != ~0U &&
hwpoison_filter_dev_minor != MINOR(dev))
return -EINVAL;
return 0;
}
static int hwpoison_filter_flags(struct page *p)
{
if (!hwpoison_filter_flags_mask)
return 0;
if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
hwpoison_filter_flags_value)
return 0;
else
return -EINVAL;
}
/*
* This allows stress tests to limit test scope to a collection of tasks
* by putting them under some memcg. This prevents killing unrelated/important
* processes such as /sbin/init. Note that the target task may share clean
* pages with init (eg. libc text), which is harmless. If the target task
* share _dirty_ pages with another task B, the test scheme must make sure B
* is also included in the memcg. At last, due to race conditions this filter
* can only guarantee that the page either belongs to the memcg tasks, or is
* a freed page.
*/
#ifdef CONFIG_MEMCG
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
if (!hwpoison_filter_memcg)
return 0;
if (page_cgroup_ino(p) != hwpoison_filter_memcg)
return -EINVAL;
return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif
int hwpoison_filter(struct page *p)
{
if (!hwpoison_filter_enable)
return 0;
if (hwpoison_filter_dev(p))
return -EINVAL;
if (hwpoison_filter_flags(p))
return -EINVAL;
if (hwpoison_filter_task(p))
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(hwpoison_filter);
#else
int hwpoison_filter(struct page *p)
{
return 0;
}
#endif
/*
* Kill all processes that have a poisoned page mapped and then isolate
* the page.
*
* General strategy:
* Find all processes having the page mapped and kill them.
* But we keep a page reference around so that the page is not
* actually freed yet.
* Then stash the page away
*
* There's no convenient way to get back to mapped processes
* from the VMAs. So do a brute-force search over all
* running processes.
*
* Remember that machine checks are not common (or rather
* if they are common you have other problems), so this shouldn't
* be a performance issue.
*
* Also there are some races possible while we get from the
* error detection to actually handle it.
*/
struct to_kill {
struct list_head nd;
struct task_struct *tsk;
unsigned long addr;
short size_shift;
};
/*
* Send all the processes who have the page mapped a signal.
* ``action optional'' if they are not immediately affected by the error
* ``action required'' if error happened in current execution context
*/
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
{
struct task_struct *t = tk->tsk;
short addr_lsb = tk->size_shift;
int ret = 0;
pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
pfn, t->comm, task_pid_nr(t));
if ((flags & MF_ACTION_REQUIRED) && (t == current))
ret = force_sig_mceerr(BUS_MCEERR_AR,
(void __user *)tk->addr, addr_lsb);
else
/*
* Signal other processes sharing the page if they have
* PF_MCE_EARLY set.
* Don't use force here, it's convenient if the signal
* can be temporarily blocked.
*/
ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
addr_lsb, t);
if (ret < 0)
pr_info("Error sending signal to %s:%d: %d\n",
t->comm, task_pid_nr(t), ret);
return ret;
}
/*
* Unknown page type encountered. Try to check whether it can turn PageLRU by
* lru_add_drain_all.
*/
void shake_folio(struct folio *folio)
{
if (folio_test_hugetlb(folio))
return;
/*
* TODO: Could shrink slab caches here if a lightweight range-based
* shrinker will be available.
*/
if (folio_test_slab(folio))
return;
lru_add_drain_all();
}
EXPORT_SYMBOL_GPL(shake_folio);
static void shake_page(struct page *page)
{
shake_folio(page_folio(page));
}
static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
unsigned long address)
{
unsigned long ret = 0;
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pte_t ptent;
VM_BUG_ON_VMA(address == -EFAULT, vma);
pgd = pgd_offset(vma->vm_mm, address);
if (!pgd_present(*pgd))
return 0;
p4d = p4d_offset(pgd, address);
if (!p4d_present(*p4d))
return 0;
pud = pud_offset(p4d, address);
if (!pud_present(*pud))
return 0;
if (pud_devmap(*pud))
return PUD_SHIFT;
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return 0;
if (pmd_devmap(*pmd))
return PMD_SHIFT;
pte = pte_offset_map(pmd, address);
if (!pte)
return 0;
ptent = ptep_get(pte);
if (pte_present(ptent) && pte_devmap(ptent))
ret = PAGE_SHIFT;
pte_unmap(pte);
return ret;
}
/*
* Failure handling: if we can't find or can't kill a process there's
* not much we can do. We just print a message and ignore otherwise.
*/
/*
* Schedule a process for later kill.
* Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
*/
static void __add_to_kill(struct task_struct *tsk, struct page *p,
struct vm_area_struct *vma, struct list_head *to_kill,
unsigned long addr)
{
struct to_kill *tk;
tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
if (!tk) {
pr_err("Out of memory while machine check handling\n");
return;
}
tk->addr = addr;
if (is_zone_device_page(p))
tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
else
tk->size_shift = page_shift(compound_head(p));
/*
* Send SIGKILL if "tk->addr == -EFAULT". Also, as
* "tk->size_shift" is always non-zero for !is_zone_device_page(),
* so "tk->size_shift == 0" effectively checks no mapping on
* ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
* to a process' address space, it's possible not all N VMAs
* contain mappings for the page, but at least one VMA does.
* Only deliver SIGBUS with payload derived from the VMA that
* has a mapping for the page.
*/
if (tk->addr == -EFAULT) {
pr_info("Unable to find user space address %lx in %s\n",
page_to_pfn(p), tsk->comm);
} else if (tk->size_shift == 0) {
kfree(tk);
return;
}
get_task_struct(tsk);
tk->tsk = tsk;
list_add_tail(&tk->nd, to_kill);
}
static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
struct vm_area_struct *vma, struct list_head *to_kill,
unsigned long addr)
{
if (addr == -EFAULT)
return;
__add_to_kill(tsk, p, vma, to_kill, addr);
}
#ifdef CONFIG_KSM
static bool task_in_to_kill_list(struct list_head *to_kill,
struct task_struct *tsk)
{
struct to_kill *tk, *next;
list_for_each_entry_safe(tk, next, to_kill, nd) {
if (tk->tsk == tsk)
return true;
}
return false;
}
void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
struct vm_area_struct *vma, struct list_head *to_kill,
unsigned long addr)
{
if (!task_in_to_kill_list(to_kill, tsk))
__add_to_kill(tsk, p, vma, to_kill, addr);
}
#endif
/*
* Kill the processes that have been collected earlier.
*
* Only do anything when FORCEKILL is set, otherwise just free the
* list (this is used for clean pages which do not need killing)
*/
static void kill_procs(struct list_head *to_kill, int forcekill,
unsigned long pfn, int flags)
{
struct to_kill *tk, *next;
list_for_each_entry_safe(tk, next, to_kill, nd) {
if (forcekill) {
if (tk->addr == -EFAULT) {
pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
tk->tsk, PIDTYPE_PID);
}
/*
* In theory the process could have mapped
* something else on the address in-between. We could
* check for that, but we need to tell the
* process anyways.
*/
else if (kill_proc(tk, pfn, flags) < 0)
pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
}
list_del(&tk->nd);
put_task_struct(tk->tsk);
kfree(tk);
}
}
/*
* Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
* on behalf of the thread group. Return task_struct of the (first found)
* dedicated thread if found, and return NULL otherwise.
*
* We already hold rcu lock in the caller, so we don't have to call
* rcu_read_lock/unlock() in this function.
*/
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
{
struct task_struct *t;
for_each_thread(tsk, t) {
if (t->flags & PF_MCE_PROCESS) {
if (t->flags & PF_MCE_EARLY)
return t;
} else {
if (sysctl_memory_failure_early_kill)
return t;
}
}
return NULL;
}
/*
* Determine whether a given process is "early kill" process which expects
* to be signaled when some page under the process is hwpoisoned.
* Return task_struct of the dedicated thread (main thread unless explicitly
* specified) if the process is "early kill" and otherwise returns NULL.
*
* Note that the above is true for Action Optional case. For Action Required
* case, it's only meaningful to the current thread which need to be signaled
* with SIGBUS, this error is Action Optional for other non current
* processes sharing the same error page,if the process is "early kill", the
* task_struct of the dedicated thread will also be returned.
*/
struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
{
if (!tsk->mm)
return NULL;
/*
* Comparing ->mm here because current task might represent
* a subthread, while tsk always points to the main thread.
*/
if (force_early && tsk->mm == current->mm)
return current;
return find_early_kill_thread(tsk);
}
/*
* Collect processes when the error hit an anonymous page.
*/
static void collect_procs_anon(struct folio *folio, struct page *page,
struct list_head *to_kill, int force_early)
{
struct task_struct *tsk;
struct anon_vma *av;
pgoff_t pgoff;
av = folio_lock_anon_vma_read(folio, NULL);
if (av == NULL) /* Not actually mapped anymore */
return;
pgoff = page_to_pgoff(page);
rcu_read_lock();
for_each_process(tsk) {
struct vm_area_struct *vma;
struct anon_vma_chain *vmac;
struct task_struct *t = task_early_kill(tsk, force_early);
unsigned long addr;
if (!t)
continue;
anon_vma_interval_tree_foreach(vmac, &av->rb_root,
pgoff, pgoff) {
vma = vmac->vma;
if (vma->vm_mm != t->mm)
continue;
addr = page_mapped_in_vma(page, vma);
add_to_kill_anon_file(t, page, vma, to_kill, addr);
}
}
rcu_read_unlock();
anon_vma_unlock_read(av);
}
/*
* Collect processes when the error hit a file mapped page.
*/
static void collect_procs_file(struct folio *folio, struct page *page,
struct list_head *to_kill, int force_early)
{
struct vm_area_struct *vma;
struct task_struct *tsk;
struct address_space *mapping = folio->mapping;
pgoff_t pgoff;
i_mmap_lock_read(mapping);
rcu_read_lock();
pgoff = page_to_pgoff(page);
for_each_process(tsk) {
struct task_struct *t = task_early_kill(tsk, force_early);
unsigned long addr;
if (!t)
continue;
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
pgoff) {
/*
* Send early kill signal to tasks where a vma covers
* the page but the corrupted page is not necessarily
* mapped in its pte.
* Assume applications who requested early kill want
* to be informed of all such data corruptions.
*/
if (vma->vm_mm != t->mm)
continue;
addr = page_address_in_vma(page, vma);
add_to_kill_anon_file(t, page, vma, to_kill, addr);
}
}
rcu_read_unlock();
i_mmap_unlock_read(mapping);
}
#ifdef CONFIG_FS_DAX
static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
struct vm_area_struct *vma,
struct list_head *to_kill, pgoff_t pgoff)
{
unsigned long addr = vma_address(vma, pgoff, 1);
__add_to_kill(tsk, p, vma, to_kill, addr);
}
/*
* Collect processes when the error hit a fsdax page.
*/
static void collect_procs_fsdax(struct page *page,
struct address_space *mapping, pgoff_t pgoff,
struct list_head *to_kill, bool pre_remove)
{
struct vm_area_struct *vma;
struct task_struct *tsk;
i_mmap_lock_read(mapping);
rcu_read_lock();
for_each_process(tsk) {
struct task_struct *t = tsk;
/*
* Search for all tasks while MF_MEM_PRE_REMOVE is set, because
* the current may not be the one accessing the fsdax page.
* Otherwise, search for the current task.
*/
if (!pre_remove)
t = task_early_kill(tsk, true);
if (!t)
continue;
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
if (vma->vm_mm == t->mm)
add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
}
}
rcu_read_unlock();
i_mmap_unlock_read(mapping);
}
#endif /* CONFIG_FS_DAX */
/*
* Collect the processes who have the corrupted page mapped to kill.
*/
static void collect_procs(struct folio *folio, struct page *page,
struct list_head *tokill, int force_early)
{
if (!folio->mapping)
return;
if (unlikely(folio_test_ksm(folio)))
collect_procs_ksm(folio, page, tokill, force_early);
else if (folio_test_anon(folio))
collect_procs_anon(folio, page, tokill, force_early);
else
collect_procs_file(folio, page, tokill, force_early);
}
struct hwpoison_walk {
struct to_kill tk;
unsigned long pfn;
int flags;
};
static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
{
tk->addr = addr;
tk->size_shift = shift;
}
static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
unsigned long poisoned_pfn, struct to_kill *tk)
{
unsigned long pfn = 0;
if (pte_present(pte)) {
pfn = pte_pfn(pte);
} else {
swp_entry_t swp = pte_to_swp_entry(pte);
if (is_hwpoison_entry(swp))
pfn = swp_offset_pfn(swp);
}
if (!pfn || pfn != poisoned_pfn)
return 0;
set_to_kill(tk, addr, shift);
return 1;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
struct hwpoison_walk *hwp)
{
pmd_t pmd = *pmdp;
unsigned long pfn;
unsigned long hwpoison_vaddr;
if (!pmd_present(pmd))
return 0;
pfn = pmd_pfn(pmd);
if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
return 1;
}
return 0;
}
#else
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
struct hwpoison_walk *hwp)
{
return 0;
}
#endif
static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct hwpoison_walk *hwp = walk->private;
int ret = 0;
pte_t *ptep, *mapped_pte;
spinlock_t *ptl;
ptl = pmd_trans_huge_lock(pmdp, walk->vma);
if (ptl) {
ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
spin_unlock(ptl);
goto out;
}
mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
addr, &ptl);
if (!ptep)
goto out;
for (; addr != end; ptep++, addr += PAGE_SIZE) {
ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
hwp->pfn, &hwp->tk);
if (ret == 1)
break;
}
pte_unmap_unlock(mapped_pte, ptl);
out:
cond_resched();
return ret;
}
#ifdef CONFIG_HUGETLB_PAGE
static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct hwpoison_walk *hwp = walk->private;
pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
struct hstate *h = hstate_vma(walk->vma);
return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
hwp->pfn, &hwp->tk);
}
#else
#define hwpoison_hugetlb_range NULL
#endif
static const struct mm_walk_ops hwpoison_walk_ops = {
.pmd_entry = hwpoison_pte_range,
.hugetlb_entry = hwpoison_hugetlb_range,
.walk_lock = PGWALK_RDLOCK,
};
/*
* Sends SIGBUS to the current process with error info.
*
* This function is intended to handle "Action Required" MCEs on already
* hardware poisoned pages. They could happen, for example, when
* memory_failure() failed to unmap the error page at the first call, or
* when multiple local machine checks happened on different CPUs.
*
* MCE handler currently has no easy access to the error virtual address,
* so this function walks page table to find it. The returned virtual address
* is proper in most cases, but it could be wrong when the application
* process has multiple entries mapping the error page.
*/
static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
int flags)
{
int ret;
struct hwpoison_walk priv = {
.pfn = pfn,
};
priv.tk.tsk = p;
if (!p->mm)
return -EFAULT;
mmap_read_lock(p->mm);
ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
(void *)&priv);
if (ret == 1 && priv.tk.addr)
kill_proc(&priv.tk, pfn, flags);
else
ret = 0;
mmap_read_unlock(p->mm);
return ret > 0 ? -EHWPOISON : -EFAULT;
}
/*
* MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
* But it could not do more to isolate the page from being accessed again,
* nor does it kill the process. This is extremely rare and one of the
* potential causes is that the page state has been changed due to
* underlying race condition. This is the most severe outcomes.
*
* MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
* It should have killed the process, but it can't isolate the page,
* due to conditions such as extra pin, unmap failure, etc. Accessing
* the page again may trigger another MCE and the process will be killed
* by the m-f() handler immediately.
*
* MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
* The page is unmapped, and is removed from the LRU or file mapping.
* An attempt to access the page again will trigger page fault and the
* PF handler will kill the process.
*
* MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
* The page has been completely isolated, that is, unmapped, taken out of
* the buddy system, or hole-punnched out of the file mapping.
*/
static const char *action_name[] = {
[MF_IGNORED] = "Ignored",
[MF_FAILED] = "Failed",
[MF_DELAYED] = "Delayed",
[MF_RECOVERED] = "Recovered",
};
static const char * const action_page_types[] = {
[MF_MSG_KERNEL] = "reserved kernel page",
[MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
[MF_MSG_HUGE] = "huge page",
[MF_MSG_FREE_HUGE] = "free huge page",
[MF_MSG_GET_HWPOISON] = "get hwpoison page",
[MF_MSG_UNMAP_FAILED] = "unmapping failed page",
[MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
[MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
[MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
[MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
[MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
[MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
[MF_MSG_DIRTY_LRU] = "dirty LRU page",
[MF_MSG_CLEAN_LRU] = "clean LRU page",
[MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
[MF_MSG_BUDDY] = "free buddy page",
[MF_MSG_DAX] = "dax page",
[MF_MSG_UNSPLIT_THP] = "unsplit thp",
[MF_MSG_ALREADY_POISONED] = "already poisoned",
[MF_MSG_UNKNOWN] = "unknown page",
};
/*
* XXX: It is possible that a page is isolated from LRU cache,
* and then kept in swap cache or failed to remove from page cache.
* The page count will stop it from being freed by unpoison.
* Stress tests should be aware of this memory leak problem.
*/
static int delete_from_lru_cache(struct folio *folio)
{
if (folio_isolate_lru(folio)) {
/*
* Clear sensible page flags, so that the buddy system won't
* complain when the folio is unpoison-and-freed.
*/
folio_clear_active(folio);
folio_clear_unevictable(folio);
/*
* Poisoned page might never drop its ref count to 0 so we have
* to uncharge it manually from its memcg.
*/
mem_cgroup_uncharge(folio);
/*
* drop the refcount elevated by folio_isolate_lru()
*/
folio_put(folio);
return 0;
}
return -EIO;
}
static int truncate_error_folio(struct folio *folio, unsigned long pfn,
struct address_space *mapping)
{
int ret = MF_FAILED;
if (mapping->a_ops->error_remove_folio) {
int err = mapping->a_ops->error_remove_folio(mapping, folio);
if (err != 0)
pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
else if (!filemap_release_folio(folio, GFP_NOIO))
pr_info("%#lx: failed to release buffers\n", pfn);
else
ret = MF_RECOVERED;
} else {
/*
* If the file system doesn't support it just invalidate
* This fails on dirty or anything with private pages
*/
if (mapping_evict_folio(mapping, folio))
ret = MF_RECOVERED;
else
pr_info("%#lx: Failed to invalidate\n", pfn);
}
return ret;
}