forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCUDADeviceAssertionHost.cpp
346 lines (300 loc) · 12.4 KB
/
CUDADeviceAssertionHost.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#include <c10/cuda/CUDADeviceAssertionHost.h>
#include <c10/cuda/CUDAException.h>
#include <c10/util/Backtrace.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <cuda_runtime.h>
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <thread>
#define C10_CUDA_CHECK_WO_DSA(EXPR) \
do { \
const cudaError_t __err = EXPR; \
c10::cuda::c10_cuda_check_implementation( \
static_cast<int32_t>(__err), \
__FILE__, \
__func__, /* Line number data type not well-defined between \
compilers, so we perform an explicit cast */ \
static_cast<uint32_t>(__LINE__), \
false); \
} while (0)
namespace c10 {
namespace cuda {
namespace {
#ifdef TORCH_USE_CUDA_DSA
/// Get current device id
/// We need our own implementation of this function to prevent
/// an infinite initialization loop for CUDAKernelLaunchRegistry
int dsa_get_device_id() {
int device = -1;
C10_CUDA_CHECK_WO_DSA(cudaGetDevice(&device));
return device;
}
/// Get a device's compute capability - note that this dangerously assumes
/// that if one CUDA GPU supports device-side assertions they all do. This is
/// probably fine since the latest CUDA GPU that doesn't support UVM is the
/// K80 released 2014-11-17. Mixing that GPU with a newer one is likely to be
/// rare enough that the defensive
/// We need our own implementation of this function to prevent
/// an infinite initialization loop for CUDAKernelLaunchRegistry
int dsa_get_device_compute_capability(const int device_num) {
int compute_capability = -1;
C10_CUDA_CHECK_WO_DSA(cudaDeviceGetAttribute(
&compute_capability, cudaDevAttrComputeCapabilityMajor, device_num));
return compute_capability;
}
#endif
/// Get the number of CUDA devices
/// We need our own implementation of this function to prevent
/// an infinite initialization loop for CUDAKernelLaunchRegistry
int dsa_get_device_count() {
int device_count = -1;
C10_CUDA_CHECK_WO_DSA(cudaGetDeviceCount(&device_count));
return device_count;
}
bool dsa_check_if_all_devices_support_managed_memory() {
// It looks as though this'll work best on CUDA GPUs with Pascal
// architectures or newer, per
// https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
#ifdef TORCH_USE_CUDA_DSA
for (const auto i : c10::irange(dsa_get_device_count())) {
if (dsa_get_device_compute_capability(i) < 6) {
return false;
}
}
return true;
#else
return false;
#endif
}
bool env_flag_set(const char* env_var_name) {
const char* const env_string = std::getenv(env_var_name);
return (env_string == nullptr) ? false : std::strcmp(env_string, "0");
}
/// Deleter for UVM/managed memory pointers
void uvm_deleter(DeviceAssertionsData* uvm_assertions_ptr) {
// Ignore error in destructor
if (uvm_assertions_ptr) {
C10_CUDA_IGNORE_ERROR(cudaFree(uvm_assertions_ptr));
}
}
} // namespace
/// Check that kernels ran correctly by checking the message buffer. BLOCKING.
std::string c10_retrieve_device_side_assertion_info() {
#ifdef TORCH_USE_CUDA_DSA
const auto& launch_registry = CUDAKernelLaunchRegistry::get_singleton_ref();
if (!launch_registry.enabled_at_runtime) {
return "Device-side assertion tracking was not enabled by user.";
} else if (!launch_registry.do_all_devices_support_managed_memory) {
return "Device-side assertions disabled because not all devices support managed memory.";
}
// Hack that saves a lot of challenging sync logic.
// The GPU increments the number of errors it's observed and the CPU can see
// that happening immediately which means we can make it here before the GPU
// is done writing information about those errors to memory.
// A short pause gives it time to finish. Since something's gone wrong, this
// pause shouldn't affect perf.
std::this_thread::sleep_for(std::chrono::seconds(1));
// The snapshot causes a brief block. That's okay because this function only
// executes if something's gone wrong such that speed is no longer a priority.
const auto launch_data = launch_registry.snapshot();
const auto& assertion_data = launch_data.first;
const auto& launch_infos = launch_data.second;
std::stringstream oss;
oss << "Looking for device-side assertion failure information...\n";
// Loop over each device that could be managed by the process
for (const auto device_num : c10::irange(assertion_data.size())) {
const auto& assertion_data_for_device = assertion_data.at(device_num);
// Did anything fail?
const auto failures_found = std::min(
assertion_data_for_device.assertion_count,
C10_CUDA_DSA_ASSERTION_COUNT);
if (failures_found == 0) {
continue;
}
// Something failed, let's talk about that
oss << failures_found
<< " CUDA device-side assertion failures were found on GPU #"
<< device_num << "!" << std::endl;
if (assertion_data_for_device.assertion_count >
C10_CUDA_DSA_ASSERTION_COUNT) {
oss << "But at least " << assertion_data_for_device.assertion_count
<< " assertion failures occurred on the device" << std::endl;
oss << "Adjust `C10_CUDA_DSA_ASSERTION_COUNT` if you need more assertion failure info"
<< std::endl;
}
for (const auto i : c10::irange(failures_found)) {
const auto& self = assertion_data_for_device.assertions[i];
const auto& launch_info = launch_infos[self.caller % launch_infos.size()];
oss << "Assertion failure " << i << std::endl;
oss << " GPU assertion failure message = " << self.assertion_msg
<< std::endl;
oss << " File containing assertion = " << self.filename << ":"
<< self.line_number << std::endl;
oss << " Device function containing assertion = " << self.function_name
<< std::endl;
oss << " Thread ID that failed assertion = [" << self.thread_id[0] << ","
<< self.thread_id[1] << "," << self.thread_id[2] << "]" << std::endl;
oss << " Block ID that failed assertion = [" << self.block_id[0] << ","
<< self.block_id[1] << "," << self.block_id[2] << "]" << std::endl;
if (launch_info.generation_number == self.caller) {
oss << " File containing kernel launch = "
<< launch_info.launch_filename << ":" << launch_info.launch_linenum
<< std::endl;
oss << " Function containing kernel launch = "
<< launch_info.launch_function << std::endl;
oss << " Name of kernel launched that led to failure = "
<< launch_info.kernel_name << std::endl;
oss << " Device that launched kernel = " << launch_info.device
<< std::endl;
oss << " Stream kernel was launched on = " << launch_info.stream
<< std::endl;
oss << " Backtrace of kernel launch site = ";
if (launch_registry.gather_launch_stacktrace) {
oss << "Launch stacktracing disabled." << std::endl;
} else {
oss << "\n" << launch_info.launch_stacktrace << std::endl;
}
} else {
oss << " CPU launch site info: Unavailable, the circular queue wrapped around. Increase `CUDAKernelLaunchRegistry::max_size`."
<< std::endl;
}
}
}
return oss.str();
#else
return "Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n";
#endif
}
CUDAKernelLaunchRegistry::CUDAKernelLaunchRegistry()
: do_all_devices_support_managed_memory(
dsa_check_if_all_devices_support_managed_memory()),
gather_launch_stacktrace(check_env_for_enable_launch_stacktracing()),
enabled_at_runtime(check_env_for_dsa_enabled()) {
for (C10_UNUSED const auto _ : c10::irange(dsa_get_device_count())) {
uvm_assertions.emplace_back(nullptr, uvm_deleter);
}
kernel_launches.resize(max_kernel_launches);
}
bool CUDAKernelLaunchRegistry::check_env_for_enable_launch_stacktracing()
const {
return env_flag_set("PYTORCH_CUDA_DSA_STACKTRACING");
}
bool CUDAKernelLaunchRegistry::check_env_for_dsa_enabled() const {
return env_flag_set("PYTORCH_USE_CUDA_DSA");
}
uint32_t CUDAKernelLaunchRegistry::insert(
const char* launch_filename,
const char* launch_function,
const uint32_t launch_linenum,
const char* kernel_name,
const int32_t stream_id) {
#ifdef TORCH_USE_CUDA_DSA
if (!enabled_at_runtime) {
return 0;
}
const auto backtrace = gather_launch_stacktrace ? c10::get_backtrace() : "";
const std::lock_guard<std::mutex> lock(read_write_mutex);
const auto my_gen_number = generation_number++;
// TODO: It would probably be good to get a stack trace here so that
// we can better indicate which launch caused the failure.
kernel_launches[my_gen_number % max_kernel_launches] = {
launch_filename,
launch_function,
launch_linenum,
backtrace,
kernel_name,
dsa_get_device_id(),
stream_id,
my_gen_number};
return my_gen_number;
#else
return 0;
#endif
}
std::pair<std::vector<DeviceAssertionsData>, std::vector<CUDAKernelLaunchInfo>>
CUDAKernelLaunchRegistry::snapshot() const {
// This is likely to be the longest-lasting hold on the mutex, but
// we only expect it to be called in cases where we're already failing
// and speed is no longer important
const std::lock_guard<std::mutex> lock(read_write_mutex);
std::vector<DeviceAssertionsData> device_assertions_data;
for (const auto& x : uvm_assertions) {
if (x) {
device_assertions_data.push_back(*x);
} else {
device_assertions_data.emplace_back();
}
}
return std::make_pair(device_assertions_data, kernel_launches);
}
DeviceAssertionsData* CUDAKernelLaunchRegistry::
get_uvm_assertions_ptr_for_current_device() {
#ifdef TORCH_USE_CUDA_DSA
if (!enabled_at_runtime) {
return nullptr;
}
const auto device_num = dsa_get_device_id();
// If we've already set up this GPU with managed memory, return a pointer to
// the managed memory. This is a lock-free quick-return path.
if (uvm_assertions.at(device_num)) {
return uvm_assertions.at(device_num).get();
}
// Need a lock here so there's not race-condition on creating the new device
// assertions buffer
const std::lock_guard<std::mutex> lock(gpu_alloc_mutex);
// If we've already set up this GPU with managed memory, return a pointer to
// the managed memory. This locked path ensures that the device memory is
// allocated only once
if (uvm_assertions.at(device_num)) {
return uvm_assertions.at(device_num).get();
}
// Otherwise, set up the GPU to be able to use the device-side assertion
// system
DeviceAssertionsData* uvm_assertions_ptr = nullptr;
C10_CUDA_CHECK_WO_DSA(
cudaMallocManaged(&uvm_assertions_ptr, sizeof(DeviceAssertionsData)));
C10_CUDA_CHECK_WO_DSA(cudaMemAdvise(
uvm_assertions_ptr,
sizeof(DeviceAssertionsData),
cudaMemAdviseSetPreferredLocation,
cudaCpuDeviceId));
// GPU will establish direct mapping of data in CPU memory, no page faults
// will be generated
C10_CUDA_CHECK_WO_DSA(cudaMemAdvise(
uvm_assertions_ptr,
sizeof(DeviceAssertionsData),
cudaMemAdviseSetAccessedBy,
cudaCpuDeviceId));
// Initialize the memory from the CPU; otherwise, pages may have to be created
// on demand. We think that UVM documentation indicates that first access may
// not honor preferred location, which would be bad, if true, because we want
// this memory on the host so we can access it post-assertion. Initializing
// this on the CPU helps ensure that that's where the memory will live.
*uvm_assertions_ptr = DeviceAssertionsData();
// Ownership and lifetime management of `uvm_assertions_ptr` now passes to the
// uvm_assertions unique_ptr vector
uvm_assertions.at(device_num).reset(uvm_assertions_ptr);
return uvm_assertions_ptr;
#else
return nullptr;
#endif
}
CUDAKernelLaunchRegistry& CUDAKernelLaunchRegistry::get_singleton_ref() {
static CUDAKernelLaunchRegistry launch_registry;
return launch_registry;
}
bool CUDAKernelLaunchRegistry::has_failed() const {
for (const auto& x : uvm_assertions) {
if (x && x->assertion_count > 0) {
return true;
}
}
return false;
}
} // namespace cuda
} // namespace c10