forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiscover_coverage.py
896 lines (750 loc) · 30.4 KB
/
discover_coverage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
import torch
import copy
from torch.testing._internal.common_methods_invocations import op_db
from functorch_additional_op_db import additional_op_db
from enum import Enum
import torch._functorch.top_operators_github_usage as top_ops
import pprint
import unittest
import enum
from torch.testing._internal.common_device_type import toleranceOverride
# Importing these files make modifications to the op_db that we need
import test_ops # noqa: F401
import test_vmap # noqa: F401
all_overridable = list(torch.overrides.get_testing_overrides().keys())
public_docs = [
(torch.nn.functional, 'torch.nn.functional', 'docs/source/nn.functional.rst'),
(torch.fft, 'torch.fft', 'docs/source/fft.rst'),
(torch.special, 'torch.special', 'docs/source/special.rst'),
(torch.linalg, 'torch.linalg', 'docs/source/linalg.rst'),
(torch, 'torch', 'docs/source/torch.rst'),
(torch.Tensor, 'torch.Tensor', 'docs/source/tensors.rst'),
]
# torch.abs, Tensor.abs, Tensor.abs_ are all considered to be different
def get_public_overridable_apis(pytorch_root='/raid/rzou/pt/debug-cpu'):
results = {}
all_overridable_apis = set(torch.overrides.get_testing_overrides().keys())
for module, module_name, src in public_docs:
with open(f'{pytorch_root}/{src}') as f:
lines = f.readlines()
# APIs eitehr begin with 4 spaces or ".. autofunction::"
api_lines1 = [line.strip() for line in lines if line.startswith(' ' * 4)]
api_lines2 = [line.strip()[len('.. autofunction:: '):]
for line in lines if line.startswith('.. autofunction::')]
lines = api_lines1 + api_lines2
lines = [line[7:] if line.startswith('Tensor.') else line for line in lines]
lines = [line for line in lines if hasattr(module, line)]
for line in lines:
api = getattr(module, line)
if api in all_overridable_apis:
results[f'{module_name}.{line}'] = api
return results
denylist = {
'torch.Tensor.data_ptr',
'torch.Tensor.dim',
'torch.Tensor.element_size',
'torch.Tensor.backward',
'torch.Tensor.as_strided',
'torch.Tensor.register_hook',
'torch.Tensor.record_stream',
'torch.Tensor.qscheme',
'torch.Tensor.ndimension',
'torch.Tensor.smm',
'torch.Tensor.sspaddmm',
'torch.Tensor.retain_grad',
'torch.Tensor.sparse_mask',
'torch.Tensor.sparse_dim',
'torch.Tensor.dense_dim',
'torch.Tensor.values',
'torch.Tensor.indices',
'torch.Tensor.numel',
'torch.Tensor.size',
'torch.Tensor.nelement',
'torch.Tensor.q_scale',
'torch.Tensor.q_zero_point',
'torch.Tensor.q_per_channel_scales',
'torch.Tensor.q_per_channel_zero_points',
'torch.Tensor.q_per_channel_axis',
'torch.Tensor.int_repr',
'torch.Tensor.to_sparse',
'torch.Tensor.is_inference',
'torch.Tensor.storage',
'torch.Tensor.storage_type',
}
def get_method_only_ops_we_care_about():
apis = get_public_overridable_apis()
result = []
for key, _ in apis.items():
if not key.startswith('torch.Tensor'):
continue
if key in denylist:
continue
api = key.split('.')[2]
# filter out in-place
if api.endswith('_'):
continue
if f'torch.{api}' not in apis.keys():
result.append(api)
return result
# Deduplicates torch.abs and Tensor.abs
def get_public_overridable_ops():
results = get_public_overridable_apis()
cpy = copy.deepcopy(results)
for key, _ in cpy.items():
if not key.startswith('torch.Tensor'):
continue
api = key.split('.')[2]
if f'torch.{api}' in results.keys():
del results[key]
return results
def get_public_overridable_outplace_ops():
results = get_public_overridable_ops()
cpy = copy.deepcopy(results)
for key, _ in cpy.items():
# NB: there are no dunder methods bcs we don't document those
if key.endswith('_'):
del results[key]
return results
def get_public_overridable_outplace_we_care_about():
results = get_public_overridable_outplace_ops()
cpy = copy.deepcopy(results)
for key, _ in cpy.items():
# quantization
if 'quant' in key or '.q_' in key:
del results[key]
# is_cpu, etc. It doesn't make sense to have OpInfos for these
if '.is_' in key:
del results[key]
if key in denylist and key in results:
del results[key]
return results
# e.g. nn.functional.softmax
def get_op(dotted_name):
names = dotted_name.split('.')
mod = torch
for name in names:
if not hasattr(mod, name):
return None
mod = getattr(mod, name)
return mod
# Maps function -> [OpInfo]
def get_ops_covered_by_opinfos():
ops = {}
def safe_append(dct, key, val):
if key in dct:
dct[key].append(val)
else:
dct[key] = [val]
for opinfo in op_db:
func_op = get_op(opinfo.name)
if func_op:
safe_append(ops, func_op, opinfo)
if opinfo.method_variant:
safe_append(ops, opinfo.method_variant, opinfo)
if opinfo.inplace_variant:
safe_append(ops, opinfo.inplace_variant, opinfo)
for alias in opinfo.aliases:
safe_append(ops, alias.op, opinfo)
return ops
factory_fns = {
'tensor', 'zeros', 'ones', 'randn', 'arange', 'rand', 'empty', 'randperm',
'linspace', 'logspace', 'hann_window', 'full', 'eye', 'blackman_window',
'barlett_window', 'randint', 'range', 'arange',
}
def get_top_ops(torch_threshold, nn_fn_threshold, with_counts=False):
denylist = set({
# These are either not real "operators", factory functions
# that trivially work, or not-documented ops.
'load', 'no_grad', 'save', 'from_numpy',
'manual_seed', 'set_grad_enabled',
'set_default_tensor_type', 'set_num_threads',
'set_printoptions', 'numel',
'set_default_dtype', 'sparse_coo_tensor', 'set_rng_state',
'get_rng_state', 'get_default_dtype', 'initial_seed',
'get_num_threads', 'quantize_per_tensor',
'hann_window', 'is_tensor', 'as_tensor',
'equal', 'enable_grad', 'seed', 'is_storage',
'is_floating_point', 'nn.functional.torch',
'set_flush_denormal', 'set_num_interop_threads', 'dequantize',
'get_num_interop_threads', 'nn.functional.math',
'nn.functional.threshold_',
'nn.functional.selu_',
'nn.functional.elu_',
'nn.functional.rrelu_',
'nn.functional.leaky_relu_',
'nn.functional.hardtanh_',
'nn.functional.has_torch_function',
'nn.functional.has_torch_function_unary',
'nn.functional.has_torch_function_variadic',
'nn.functional.handle_torch_function',
'nn.functional.adaptive_max_pool1d_with_indices',
'nn.functional.adaptive_max_pool2d_with_indices',
'nn.functional.adaptive_max_pool3d_with_indices',
'nn.functional.fractional_max_pool2d_with_indices',
'nn.functional.fractional_max_pool3d_with_indices',
'is_complex',
'grad',
'quantize_per_channel',
'nn.functional.max_pool2d_with_indices',
'nn.functional.max_pool3d_with_indices',
'nn.functional.max_pool1d_with_indices',
'nn.functional.celu_',
'nn.functional.grad',
'nn.functional.relu_',
'nn.functional.boolean_dispatch',
'nn.functional.assert_int_or_pair',
'fft', # is namespace
})
torch_ops = top_ops.top_torch
nn_fn_ops = top_ops.get_nn_functional_top_list()
torch_ops = [op for op in torch_ops if op[0] not in denylist]
nn_fn_ops = [op for op in nn_fn_ops if op[0] not in denylist]
ops = torch_ops[:torch_threshold] + nn_fn_ops[:nn_fn_threshold]
# Now, sort by priority
ops.sort(reverse=True, key=lambda op: op[1])
if not with_counts:
ops = [op[0] for op in ops]
return ops
def get_ops_percentage(torch_threshold, nn_fn_threshold):
data = top_ops.top_torch + top_ops.get_nn_functional_top_list()
def get_num_usages(opname):
# Ignore this, this is heavily inflated
if opname == 't':
return 0
result = [op[1] for op in data if op[0] == opname]
assert len(result) == 1
return result[0]
# get all operators that are not in the denylist
all_ops = get_top_ops(999999, 999999)
total_op_usages = sum([get_num_usages(op) for op in all_ops])
# get subset of all operators
subset_ops = get_top_ops(torch_threshold, nn_fn_threshold)
subset_op_usages = sum([get_num_usages(op) for op in subset_ops])
return subset_op_usages / total_op_usages
def get_top_ops_not_covered_by_opinfo(torch_threshold=0, nn_fn_threshold=0):
ops = get_top_ops(torch_threshold, nn_fn_threshold)
ops_with_opinfo = []
for op in op_db:
ops_with_opinfo.append(op.name)
ops_with_opinfo.extend([op.name for op in op.aliases])
ops_with_opinfo = set(ops_with_opinfo)
result = [op for op in ops if op not in ops_with_opinfo]
result = [op for op in result if op not in denylist]
result = [op for op in result if op not in factory_fns]
return result
def get_covered_ops(ops_list, invert=False):
ops_covered_by_opinfo = get_ops_covered_by_opinfos()
overridable_outplace_ops = ops_list
results = {}
for key, op in overridable_outplace_ops.items():
cond = op in ops_covered_by_opinfo
if invert:
cond = not cond
if cond:
results[key] = op
return results
class Status(Enum):
Correct = 0
Fast = 1
tests = {
'test_vmap_exhaustive',
'test_op_has_batch_rule',
'test_vjp',
'test_vmapvjp',
'test_vmapvjp_has_batch_rule',
'test_jvp',
'test_vmapjvp',
}
def is_decorateinfo_skip_or_xfail(decorateinfo):
assert len(decorateinfo.decorators) == 1
actual_decorator = decorateinfo.decorators[0]
if isinstance(actual_decorator, toleranceOverride):
return False
if actual_decorator == unittest.expectedFailure:
return True
# Assume the rest are skips
return True
def get_all_tested_ops():
overridable_outplace_we_care_about = get_public_overridable_outplace_we_care_about()
op_to_opinfo = get_ops_covered_by_opinfos()
result = set({})
for name, op in get_covered_ops(overridable_outplace_we_care_about).items():
opinfos = op_to_opinfo[op]
for opinfo in opinfos:
result.add(opinfo.name)
return result
def get_skipped_or_xfailed_ops_for(test_name):
overridable_outplace_we_care_about = get_public_overridable_outplace_we_care_about()
op_to_opinfo = get_ops_covered_by_opinfos()
result = set({})
for name, op in get_covered_ops(overridable_outplace_we_care_about).items():
opinfos = op_to_opinfo[op]
for opinfo in opinfos:
for decorator in opinfo.decorators:
if not hasattr(decorator, 'test_name'):
continue
if decorator.test_name != test_name:
continue
if is_decorateinfo_skip_or_xfail(decorator):
result.add(opinfo.name)
return result
def get_statuses(for_subset=None, invert=False):
overridable_outplace_we_care_about = get_public_overridable_outplace_we_care_about()
if for_subset is not None:
overridable_outplace_we_care_about = {
k: v
for k, v in overridable_outplace_we_care_about.items()
# Removes "torch."
if k[6:] in for_subset
}
op_to_opinfo = get_ops_covered_by_opinfos()
result = {}
_ = get_covered_ops(overridable_outplace_we_care_about)
def get_covered_tests(op):
opinfos = op_to_opinfo[op]
result = copy.deepcopy(tests)
for opinfo in opinfos:
for decorator in opinfo.decorators:
if not hasattr(decorator, 'test_name'):
continue
if decorator.test_name in tests and decorator.test_name in result:
result.remove(decorator.test_name)
return result
def get_all_aliases(op):
opinfos = op_to_opinfo[op]
result = []
for opinfo in opinfos:
result.append(opinfo.name)
result.extend(opinfo.aliases)
return set(result)
for name, op in get_covered_ops(overridable_outplace_we_care_about).items():
successful_tests = get_covered_tests(op)
failed_tests = tests - successful_tests
result[name] = failed_tests if invert else successful_tests
return result
def transpose_statuses(for_subset=None, invert=False):
statuses = get_statuses(for_subset, invert=invert)
result = {}
for test in tests:
result[test] = set({})
for op, supported in statuses.items():
for test in supported:
result[test].add(op)
return result
overridable_apis = get_public_overridable_apis()
overridable_ops = get_public_overridable_ops()
overridable_outplace_ops = get_public_overridable_outplace_ops()
overridable_outplace_we_care_about = get_public_overridable_outplace_we_care_about()
tested_overridable_outplace_ops = get_covered_ops(overridable_outplace_we_care_about)
untested_overridable_outplace_ops = get_covered_ops(overridable_outplace_we_care_about, invert=True)
# print("List of OpInfos we need:")
# for key in untested_overridable_outplace_ops.keys():
# print(key)
# print("-" * 80)
# print("")
print(f'Overridable public APIs: {len(overridable_apis)}')
print(f'Overridable public ops: {len(overridable_ops)}')
print(f'Overridable public outplace ops: {len(overridable_outplace_ops)}')
print(f'Overridable public outplace ops we care about: {len(overridable_outplace_we_care_about)}')
print(f'OpInfo-tested overridable public outplace ops: {len(tested_overridable_outplace_ops)}')
def remove_torch(name):
assert name[:6] == 'torch.'
return name[6:]
def get_list_of_all_tests():
all_tests = list(tested_overridable_outplace_ops.keys())
return {remove_torch(test) for test in all_tests}
mytest = {
'test_vmap_exhaustive',
'test_op_has_batch_rule',
'test_vjp',
'test_vmapvjp',
'test_vmapvjp_has_batch_rule',
}
print('*' * 80)
all_tests = get_list_of_all_tests()
for test in mytest:
result = get_skipped_or_xfailed_ops_for(test)
diff = len(all_tests - result)
print(f'{test}: {diff}')
def get_jvp_coverage(subset=None):
# - number that support autograd
# - number that support forward_ad (in pytorch core)
# - number that support functorch.jvp
op_to_opinfo = get_ops_covered_by_opinfos()
ops_dct = tested_overridable_outplace_ops
if subset is not None:
ops_dct = {name: op for name, op in ops_dct.items()
if remove_torch(name) in subset}
supports_autograd_ops_dct = {name: op_to_opinfo[fn] for name, fn in ops_dct.items()
if op_to_opinfo[fn][0].supports_autograd}
supports_forwardad_ops_dct = {name: op_to_opinfo[fn] for name, fn in ops_dct.items()
if op_to_opinfo[fn][0].supports_forward_ad}
ops = {remove_torch(test) for test in list(ops_dct.keys())}
supports_autograd = {remove_torch(test)
for test in list(supports_autograd_ops_dct.keys())}
supports_forward_ad = {remove_torch(test)
for test in list(supports_forwardad_ops_dct.keys())}
assert supports_forward_ad.issubset(supports_autograd)
assert supports_autograd.issubset(ops)
failed_ops = get_skipped_or_xfailed_ops_for('test_jvp')
coverage = len(supports_forward_ad - failed_ops)
no_forward_ad = len(supports_autograd) - len(supports_forward_ad)
print(f'test_jvp, {coverage}, {no_forward_ad}, {len(ops)}')
get_jvp_coverage()
get_jvp_coverage(get_top_ops(100, 25))
for op in get_top_ops(100, 25):
print(op)
print('*' * 80)
# result = get_skipped_or_xfailed_ops_for('test_vmap_exhaustive')
# result = get_skipped_or_xfailed_ops_for('test_op_has_batch_rule')
# result = get_skipped_or_xfailed_ops_for('test_vjp')
# result = get_skipped_or_xfailed_ops_for('test_vmapvjp')
# result = get_skipped_or_xfailed_ops_for('test_vmapvjp_has_batch_rule')
# import pdb; pdb.set_trace()
statuses = transpose_statuses()
for test in tests:
print(f'{test} coverage {len(statuses[test])}')
method_only_ops = get_method_only_ops_we_care_about()
# for op in method_only_ops:
# print(f' {op},')
top_ops_not_covered_by_opinfo = get_top_ops_not_covered_by_opinfo(100, 25)
print('=' * 80)
for op in top_ops_not_covered_by_opinfo:
print(f'{op}, {top_ops.usage_count[op]}')
# print("top ops not covered by opinfo: ")
# top_ops_not_covered_by_opinfo = get_top_ops_not_covered_by_opinfo(200, 50)
# for op in top_ops_not_covered_by_opinfo:
# print(f'{op}, {top_ops.usage_count[op]}')
# print("top ops not covered by opinfo: ")
# top_ops_not_covered_by_opinfo = get_top_ops_not_covered_by_opinfo(220, 92)
# for op in top_ops_not_covered_by_opinfo:
# print(f'{op}, {top_ops.usage_count[op]}')
# print("top ops not covered by opinfo: ")
# top_ops_not_covered_by_opinfo = get_top_ops_not_covered_by_opinfo(999, 999)
# for op in top_ops_not_covered_by_opinfo:
# print(f'{op}, {top_ops.usage_count[op]}')
def remove_from_set(parent, to_remove):
for to_remove_elt in to_remove:
if to_remove_elt in parent:
parent.remove(to_remove_elt)
def print_coverage_info(th=100, nn=25):
print('=' * 80)
print(f"top {th}, {nn} coverage")
statuses = transpose_statuses(get_top_ops(th, nn), invert=True)
top_ops_not_covered_by_opinfo = get_top_ops_not_covered_by_opinfo(th, nn)
# testing problems
exemptions = {
'torch.nn.functional.dropout', # randomness
}
# Allowed exemptions
vmap_exemptions = {
'torch.randn_like', # randomness
'torch.rand_like', # randomness
'torch.allclose', # number output
'torch.unique', # dynamic
'torch.nonzero', # dynamic
'torch.masked_select', # dynamic
'torch.prod', # dynamic (backward)
'torch.norm', # norm with nuc is not commonly used; we support the other cases.
'torch.svd', # There isn't a bug, it is just nondeterministic so we can't test it.
'torch.nn.functional.embedding', # We support everything except the sparse option.
}
remove_from_set(statuses['test_vmap_exhaustive'], vmap_exemptions)
remove_from_set(statuses['test_vmapvjp'], vmap_exemptions)
remove_from_set(statuses['test_vmapvjp_has_batch_rule'], vmap_exemptions)
remove_from_set(statuses['test_op_has_batch_rule'], vmap_exemptions)
remove_from_set(statuses['test_vmapjvp'], vmap_exemptions)
for test in tests:
remove_from_set(statuses[test], exemptions)
print(f"total ops in set: {th + nn}")
print(f"tested by OpInfo: {th + nn - len(top_ops_not_covered_by_opinfo)}")
for test in tests:
if test in {'test_jvp', 'test_vmapjvp'}:
continue
print(f'{test} failing coverage {len(statuses[test])}')
# We don't care about these yet
del statuses['test_jvp']
del statuses['test_vmapjvp']
pprint.pprint(statuses)
def get_name_to_opinfo_map():
dct = {}
for op in (op_db + additional_op_db):
def add(name, op):
if name not in dct:
dct[name] = []
dct[name].append(op)
add(op.name, op)
for alias in op.aliases:
add(alias.name, op)
return dct
NAME_TO_OPINFO = get_name_to_opinfo_map()
class Support(enum.Enum):
NO = 0
YES = 1
UNKNOWN = 2
FACTORY_FNS = {
'tensor', 'zeros', 'ones', 'randn', 'arange', 'rand', 'empty', 'range',
'full', 'randperm', 'eye', 'randint', 'linspace', 'logspace',
}
VJP_EXEMPTIONS = {
'nn.functional.dropout', # not actually problem, randomness testing artifact
'nn.functional.dropout2d', # not actually problem, randomness testing artifact
'nn.functional.rrelu', # not actually problem, randomness testing artifact
'bernoulli', # not actually problem, randomness testing artifact
'normal', # not actually problem, randomness testing artifact
}
VMAP_EXEMPTIONS = {
'randn_like', # randomness
'rand_like', # randomness
'allclose', # number output
'unique', # dynamic
'nonzero', # dynamic
'masked_select', # dynamic
'prod', # dynamic (backward)
'norm', # norm with nuc is not commonly used; we support the other cases.
'svd', # There isn't a bug, it is just nondeterministic so we can't test it.
'nn.functional.embedding', # We support everything except the sparse option.
'nn.functional.dropout', # randomness
'nn.functional.dropout2d', # randomness
'bernoulli', # randomness
'multinomial', # randomness
'normal', # randomness
}
JVP_EXEMPTIONS = {
'nn.functional.dropout', # not actually problem, randomness testing artifact
'nn.functional.dropout2d', # not actually problem, randomness testing artifact
'nn.functional.rrelu', # not actually problem, randomness testing artifact
'normal', # not actually problem, randomness testing artifact
'bernoulli', # not actually problem, randomness testing artifact
}
class Operator:
def __init__(self, name):
self.name = name
self.opinfos = NAME_TO_OPINFO.get(name, None)
assert self.opinfos is None or len(self.opinfos) > 0
def has_opinfo(self):
return self.opinfos is not None
def __repr__(self):
return f'Operator("{self.name}")'
def __hash__(self):
return hash(self.name)
def no_opinfos_skip_test(self, test_name):
"""Returns NO if any opinfos have a skip or xfail for the test"""
if not self.has_opinfo():
return Support.UNKNOWN
for opinfo in self.opinfos:
for decorator in opinfo.decorators:
if not hasattr(decorator, 'test_name'):
continue
if decorator.test_name != test_name:
continue
if is_decorateinfo_skip_or_xfail(decorator):
return Support.NO
return Support.YES
def any_opinfo_attr(self, attr):
if not self.has_opinfo():
raise RuntimeError()
return any([getattr(opinfo, attr) for opinfo in self.opinfos])
def all_opinfo_attr(self, attr):
if not self.has_opinfo():
raise RuntimeError()
return all([getattr(opinfo, attr) for opinfo in self.opinfos])
def supports_vjp(self):
if self.name in FACTORY_FNS:
return Support.YES
if self.name in VJP_EXEMPTIONS:
return Support.YES
return self.no_opinfos_skip_test('test_vjp')
def supports_vmap(self):
if self.name in FACTORY_FNS:
return Support.YES
if self.name in VMAP_EXEMPTIONS:
return Support.YES
return self.no_opinfos_skip_test('test_vmap_exhaustive')
def supports_fast_vmap(self):
if self.name in FACTORY_FNS:
return Support.YES
if self.name in VMAP_EXEMPTIONS:
return Support.YES
return self.no_opinfos_skip_test('test_op_has_batch_rule')
def supports_vmapvjp(self):
if self.name in FACTORY_FNS:
return Support.YES
if self.name in VMAP_EXEMPTIONS:
return Support.YES
return self.no_opinfos_skip_test('test_vmapvjp')
def supports_fast_vmapvjp(self):
if self.name in FACTORY_FNS:
return Support.YES
if self.name in VMAP_EXEMPTIONS:
return Support.YES
return self.no_opinfos_skip_test('test_vmapvjp_has_batch_rule')
def supports_jvp(self):
if self.name in FACTORY_FNS:
return Support.YES
if self.name in JVP_EXEMPTIONS:
return Support.YES
if not self.has_opinfo():
return Support.UNKNOWN
if self.any_opinfo_attr('supports_autograd') and \
not self.all_opinfo_attr('supports_forward_ad'):
return Support.NO
return self.no_opinfos_skip_test('test_jvp')
def supports_jvpvjp(self):
if self.name in FACTORY_FNS:
return Support.YES
exemptions = {
# we have support (see OpInfo), testing artifact
'nn.functional.dropout2d',
'nn.functional.dropout',
# exception: we dont even support double backward for this
'nn.functional.hardswish',
'bernoulli', # this isn't differentiable
'normal', # not differentiable
}
if self.name in exemptions:
return Support.YES
return self.no_opinfos_skip_test('test_jvpvjp')
def _supports_vmapjvp_base(self, test):
if self.name in FACTORY_FNS:
return Support.YES
VMAPJVP_EXEMPTIONS = {
'prod', # dynamic (backward)
'nn.functional.batch_norm', # testing problem
'normal', # not actually problem, randomness testing artifact
'bernoulli', # not actually problem, randomness testing artifact
'nn.functional.dropout2d', # not actually problem, randomness testing artifact
'nn.functional.dropout', # not actually problem, randomness testing artifact
# Not a problem.
# It's just that the max_norm testing mutates inputs...
# (we have our own functorch variant of the OpInfo without max_norm)
'nn.functional.embedding',
}
if self.name in VMAPJVP_EXEMPTIONS:
return Support.YES
if not self.has_opinfo():
return Support.UNKNOWN
if self.any_opinfo_attr('supports_autograd') and \
not self.all_opinfo_attr('supports_forward_ad'):
return Support.NO
return self.no_opinfos_skip_test(test)
def supports_vmapjvp(self):
return self._supports_vmapjvp_base('test_vmapjvpall')
def supports_fast_vmapjvp(self):
return self._supports_vmapjvp_base('test_vmapjvpall_has_batch_rule')
class OperatorSet:
def __init__(self, operators):
self.data = set(operators)
@classmethod
def from_names(cls, names):
return OperatorSet([Operator(name) for name in names])
@classmethod
def from_top_ops_threshold(cls, torch_threshold, nn_fn_threshold):
names = get_top_ops(torch_threshold, nn_fn_threshold)
return cls.from_names(names)
@classmethod
def from_top125(cls):
return cls.from_top_ops_threshold(100, 25)
@classmethod
def from_top160(cls):
return cls.from_top_ops_threshold(107, 53)
@classmethod
def all(cls):
dct = get_public_overridable_outplace_we_care_about()
names = dct.keys()
names_sanitized = []
for n in names:
torch_tensor = 'torch.Tensor.'
torch_dot = 'torch.'
if n.startswith(torch_tensor):
names_sanitized.append(n[len(torch_tensor):])
elif n.startswith(torch_dot):
names_sanitized.append(n[len(torch_dot):])
else:
raise AssertionError()
return cls.from_names(names_sanitized)
def query(self, operator_method, filter=(Support.NO, Support.YES, Support.UNKNOWN)):
result = {}
for key in filter:
result[key] = set()
for op in self.data:
support_status = operator_method(op)
if support_status in filter:
result[support_status].add(op)
return result
def summary(self):
checks = [
'supports_vjp',
'supports_vmap',
'supports_fast_vmap',
'supports_vmapvjp',
'supports_fast_vmapvjp',
'supports_jvp',
'supports_vmapjvp',
'supports_fast_vmapjvp',
'supports_jvpvjp',
]
result = ['test, yes, no, unknown']
for check in checks:
accessor = getattr(Operator, check)
all_results = self.query(accessor)
yes_amt = len(all_results[Support.YES])
no_amt = len(all_results[Support.NO])
unknown_amt = len(all_results[Support.UNKNOWN])
result.append(f'{check}, {yes_amt}, {no_amt}, {unknown_amt}')
return '\n'.join(result)
opset = OperatorSet.all()
has_no_opinfo = opset.query(Operator.has_opinfo, (False,))
print("=" * 30 + " Summary " + "=" * 30)
print(f'% of usages on github: {get_ops_percentage(99999, 99999)}')
print(opset.summary())
# sanity checks
result = opset.query(Operator.supports_vjp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
print("=" * 30 + " Top 60 Summary " + "=" * 30)
print(f'% of usages on github: {get_ops_percentage(35, 25)}')
opset = OperatorSet.from_top_ops_threshold(35, 25)
# result = opset.query(Operator.supports_vmapjvp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
# result = opset.query(Operator.supports_jvp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
# kresult = opset.query(Operator.supports_jvpvjp, (Support.NO, Support.UNKNOWN))
# kpprint.pprint(result)
# result = opset.query(Operator.supports_vmapjvp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
# result = opset.query(Operator.supports_fast_vmapjvp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
# pprint.pprint(result)
print(opset.summary())
print("=" * 30 + " Top 125 Summary " + "=" * 30)
print(f'% of usages on github: {get_ops_percentage(100, 25)}')
opset = OperatorSet.from_top125()
# result = opset.query(Operator.supports_vmap, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
# result = opset.query(Operator.supports_jvpvjp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
print("supports_vjp")
result = opset.query(Operator.supports_vjp, (Support.NO, Support.UNKNOWN))
pprint.pprint(result)
print("supports_jvp")
result = opset.query(Operator.supports_jvp, (Support.NO, Support.UNKNOWN))
pprint.pprint(result)
print("supports_vmapjvp")
result = opset.query(Operator.supports_vmapjvp, (Support.NO, Support.UNKNOWN))
pprint.pprint(result)
print("supports_jvpvjp")
result = opset.query(Operator.supports_jvpvjp, (Support.NO, Support.UNKNOWN))
pprint.pprint(result)
# result = opset.query(Operator.supports_fast_vmapjvp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
# pprint.pprint(result)
print(opset.summary())
# print("=" * 30 + " Top 160 Summary " + "=" * 30)
# opset = OperatorSet.from_top160()
# result = opset.query(Operator.supports_jvpvjp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
# print(opset.summary())
# Print list of everything in order
# all_ops = get_top_ops(999999, 999999, with_counts=True)
# for op, count in all_ops:
# print(f'{op}, {count}')