forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_torchinductor_opinfo.py
634 lines (568 loc) · 22.7 KB
/
test_torchinductor_opinfo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
# Owner(s): ["module: inductor"]
import atexit
import os
import sys
import unittest
from collections import defaultdict
from enum import Enum
from functools import partial
from unittest.mock import patch
import torch
import torch._dynamo
from torch._dynamo.test_case import run_tests
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyNativeDeviceTypes,
OpDTypes,
ops,
skipCPUIf,
skipCUDAIf,
)
from torch.testing._internal.common_methods_invocations import op_db, skipOps
from torch.testing._internal.common_utils import (
dtype_abbrs,
IS_MACOS,
IS_X86,
skipCUDAMemoryLeakCheckIf,
skipIfCrossRef,
skipIfTorchDynamo,
suppress_warnings,
TestCase,
)
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
try:
try:
from .test_torchinductor import check_model, check_model_cuda
except ImportError:
from test_torchinductor import check_model, check_model_cuda
except (unittest.SkipTest, ImportError) as e:
sys.stderr.write(f"{type(e)}: {e}\n")
if __name__ == "__main__":
sys.exit(0)
raise
bf16 = torch.bfloat16 # not tested
f64 = torch.float64
f32 = torch.float32
f16 = torch.float16
i8 = torch.int8 # not tested
i16 = torch.int16 # not tested
i32 = torch.int32
i64 = torch.int64
b8 = torch.bool
u8 = torch.uint8 # not tested
_ops = partial(
ops, dtypes=OpDTypes.supported, allowed_dtypes=[f16, f32, f64, i32, i64, b8]
)
# Success forces pass; failure forces fail; skip unconditionally skips testing
ExpectedTestResult = Enum("ExpectedTestResult", ("SUCCESS", "XFAILURE", "SKIP"))
COLLECT_EXPECT = os.getenv("PYTORCH_COLLECT_EXPECT", "0") == "1"
FAIL_ON_SUCCESS = os.getenv("PYTORCH_FAIL_ON_SUCCESS", "1") == "1"
ALL_SAMPLES = os.getenv("PYTORCH_ALL_SAMPLES", "0") == "1"
START = os.getenv("PYTORCH_TEST_RANGE_START", None)
END = os.getenv("PYTORCH_TEST_RANGE_END", None)
if START is not None or END is not None:
assert END is not None
assert START is not None
START = int(START)
END = int(END)
assert START < END
else:
START = 0
END = len(op_db)
seen_succeeded = defaultdict(dict)
seen_failed = defaultdict(dict)
failed_reasons = defaultdict(set)
def print_seen():
expected_failures = defaultdict(list)
def fmt_dtypes(dtypes):
r = ", ".join(sorted(dtype_abbrs[d] for d in dtypes))
return "{" + r + "}"
def process(device_type):
for op, failed_dtypes in seen_failed[device_type].items():
succeeded_dtypes = seen_succeeded.get(op, set())
expected_failures_dtypes = failed_dtypes - succeeded_dtypes
reasons = ""
if failed_reasons[op]:
reasons = " # " + ", ".join(sorted(failed_reasons[op]))
if expected_failures_dtypes:
expected_failures[device_type].append(
f' "{op}": {fmt_dtypes(expected_failures_dtypes)},{reasons}'
)
expected_failures[device_type].sort()
nl = "\n"
print(
f"""
inductor_expected_failures_single_sample[\"{device_type}\"] = {{
{nl.join(expected_failures[device_type])}
}}
"""
)
process("cpu")
process("cuda")
if COLLECT_EXPECT:
atexit.register(print_seen)
# Note, in these skip/xfail dictionaries use a string as the key
# for the default test, and a tuple of two strings for variants
inductor_skips = defaultdict(dict)
inductor_skips["cpu"] = {
"linalg.ldl_solve": {b8, f16, f32, f64, i32, i64}, # segfault
"linalg.ldl_factor": {f32, f64}, # flaky
"__rdiv__": {b8, f16, f32, f64, i32, i64}, # flaky
"nn.functional.cosine_embedding_loss": {b8}, # flaky
}
if IS_MACOS and IS_X86:
inductor_skips["cpu"]["rsqrt"] = {b8, i32}
inductor_skips["cuda"] = {
# Jiterator kernel is not expected to work with inductor
"jiterator_2inputs_2outputs": {b8, f16, f32, f64, i32, i64},
"jiterator_4inputs_with_extra_args": {b8, f16, f32, f64, i32, i64},
"jiterator_binary": {b8, f16, f32, f64, i32, i64},
"jiterator_binary_return_by_ref": {b8, f16, f32, f64, i32, i64},
"jiterator_unary": {b8, f16, f32, f64, i32, i64},
# flaky
"nn.functional.cosine_embedding_loss": {b8},
"native_batch_norm": {f16, f32, f64},
"_native_batch_norm_legit": {f16, f32, f64},
}
inductor_expected_failures_single_sample = defaultdict(dict)
inductor_expected_failures_single_sample["cpu"] = {
"__getitem__": {b8, f16, f32, f64, i32, i64},
"allclose": {f16, f32, f64},
"amax": {f16},
"amin": {f16},
"angle": {f16, f32, f64},
"argwhere": {b8, f16, f32, f64, i32, i64},
"bernoulli": {f32, f64},
"bincount": {i32, i64},
"bucketize": {b8, f16, f32, f64, i32, i64},
"cholesky": {f32, f64},
"combinations": {b8, f16, f32, f64, i32, i64},
"corrcoef": {f32, f64, i32, i64},
"cov": {f32, f64, i32, i64},
"equal": {b8, f16, f32, f64, i32, i64},
"index_add": {f16},
"index_reduce": {f16, f32, f64},
"istft": {f32, f64},
"linalg.eig": {f32, f64},
"linalg.eigh": {f32, f64},
"linalg.eigvals": {f32, f64},
"linalg.eigvalsh": {f32, f64},
"linalg.lstsq": {f32, f64},
# This pair of strings denotes a test variant
("linalg.lstsq", "grad_oriented"): {f32, f64},
"masked.var": {f16},
"masked_scatter": {f16, f32, f64},
"masked_select": {b8, f16, f32, f64, i32, i64},
("max", "reduction_with_dim"): {b8},
("min", "reduction_with_dim"): {b8},
"multinomial": {f32, f64},
"nanquantile": {f32, f64},
"nn.functional.avg_pool1d": {i64},
"nn.functional.avg_pool2d": {i64},
"nn.functional.adaptive_avg_pool2d": {f16},
"nn.functional.ctc_loss": {f32, f64},
"nn.functional.gaussian_nll_loss": {f32, f64},
"nn.functional.local_response_norm": {i64},
"nn.functional.one_hot": {i64},
"nn.functional.rrelu": {f32, f64},
"nn.functional.triplet_margin_with_distance_loss": {f32, f64, i32, i64},
"nonzero": {b8, f16, f32, f64, i32, i64},
"normal": {f16, f32, f64},
("normal", "number_mean"): {f16, f32, f64},
"polar": {f32, f64},
"quantile": {f32, f64},
"rand_like": {f16, f32, f64},
"randint_like": {f16, f32, f64, i32, i64},
"randint": {f16, f32, f64, i32, i64},
"randn_like": {f16, f32, f64},
"repeat_interleave": {b8, f16, f32, f64, i32, i64},
"scatter_add": {f16},
("scatter_reduce", "sum"): {f16},
("scatter_reduce", "prod"): {f16, f32, f64},
("_segment_reduce", "lengths"): {f16, f32, f64},
"sparse.sampled_addmm": {f32, f64},
("sparse.mm", "reduce"): {bf16, f32, f64},
"stft": {f32, f64},
"tensor_split": {b8, f16, f32, f64, i32, i64},
"to_sparse": {f32, f64},
# AssertionError: Tensor-likes are not close!
"cauchy": {f16},
"exponential": {f16},
"geometric": {f16},
"log_normal": {f16},
("normal", "in_place"): {f16, f32, f64},
"uniform": {f16},
"unique": {b8, f16, f32, f64, i32, i64},
"unique_consecutive": {b8, f16, f32, f64, i32, i64},
"var": {f16},
"var_mean": {f16},
"view_as_complex": {f16},
"fft.fft": {b8, f16, f32, f64, i32, i64},
"fft.fft2": {b8, f16, f32, f64, i32, i64},
"fft.fftn": {b8, f16, f32, f64, i32, i64},
"fft.hfft": {b8, f16, f32, f64, i32, i64},
"fft.hfft2": {b8, f16, f32, f64, i32, i64},
"fft.hfftn": {b8, f16, f32, f64, i32, i64},
"fft.ifft": {f16, f32, f64, b8, i32, i64},
"fft.ifft2": {b8, f16, f32, f64, i32, i64},
"fft.ifftn": {b8, f16, f32, f64, i32, i64},
"fft.ihfft": {f16, f32, f64, b8, i32, i64},
"fft.ihfft2": {f16, f32, f64, b8, i32, i64},
"fft.ihfftn": {f16, f32, f64, b8, i32, i64},
"fft.irfft": {b8, f16, f32, f64, i32, i64},
"fft.irfft2": {b8, f16, f32, f64, i32, i64},
"fft.irfftn": {b8, f16, f32, f64, i32, i64},
"fft.rfft": {f16, f32, f64, b8, i32, i64},
"fft.rfft2": {f16, f32, f64},
"fft.rfftn": {f16, f32, f64},
# These return complex tensors
"cdouble": {b8, i32, i64, f16, f32, f64},
"cfloat": {b8, i32, i64, f16, f32, f64},
"chalf": {b8, i32, i64, f16, f32, f64},
"complex": {f16, f32, f64},
}
inductor_expected_failures_single_sample["cuda"] = {
"__getitem__": {b8, f16, f32, f64, i32, i64},
"__rdiv__": {b8, f16, f32, f64, i32, i64},
"addr": {f16},
"allclose": {f16, f32, f64},
"angle": {f32, f64},
"argwhere": {b8, f16, f32, f64, i32, i64},
("as_strided", "partial_views"): {b8, f16, f32, f64, i32, i64},
"baddbmm": {f16},
"bernoulli": {f16, f32, f64},
"bincount": {i32, i64},
"bucketize": {b8, f16, f32, f64, i32, i64},
"cholesky": {f32, f64},
"combinations": {b8, f16, f32, f64, i32, i64},
"corrcoef": {f16, f32, f64, i32, i64},
"cov": {f16, f32, f64, i32, i64},
"equal": {b8, f16, f32, f64, i32, i64},
"index_reduce": {f16, f32, f64},
"istft": {f32, f64},
"linalg.eig": {f32, f64},
"linalg.eigh": {f32, f64},
"linalg.eigvals": {f32, f64},
"linalg.eigvalsh": {f32, f64},
"linalg.lstsq": {f32, f64},
("linalg.lstsq", "grad_oriented"): {f32, f64},
"masked_scatter": {f16, f32, f64},
"masked_select": {b8, f16, f32, f64, i32, i64},
("max", "reduction_with_dim"): {b8},
("min", "reduction_with_dim"): {b8},
"multinomial": {f16, f32, f64},
"nn.functional.adaptive_avg_pool2d": {f16},
"nn.functional.ctc_loss": {f32, f64},
"nn.functional.grid_sample": {f16},
"grid_sampler_2d": {f16},
"nn.functional.gaussian_nll_loss": {f16, f32, f64},
"nn.functional.one_hot": {i64},
"nn.functional.rrelu": {f16, f32, f64},
"nn.functional.triplet_margin_with_distance_loss": {f16, f32, f64, i32, i64},
"nonzero": {b8, f16, f32, f64, i32, i64},
"normal": {f16, f32, f64},
("normal", "number_mean"): {f16, f32, f64},
"polar": {f32, f64},
"pow": {i32, i64},
"rand_like": {f16, f32, f64},
"randint_like": {f16, f32, f64, i32, i64},
"randint": {f16, f32, f64, i32, i64},
"randn_like": {f16, f32, f64},
"repeat_interleave": {b8, f16, f32, f64, i32, i64},
("round", "decimals_3"): {f16},
("scatter_reduce", "prod"): {f16, f32, f64},
("_segment_reduce", "lengths"): {f16, f32, f64},
"sparse.sampled_addmm": {f32, f64},
("std_mean", "unbiased"): {f16},
"stft": {f32, f64},
"tensor_split": {b8, f16, f32, f64, i32, i64},
"to_sparse": {f16, f32, f64},
# AssertionError: Tensor-likes are not close!
"cauchy": {f16, f32, f64},
"exponential": {f16, f32, f64},
"geometric": {f16, f32, f64, i32, i64},
("normal", "in_place"): {f16, f32, f64},
"log_normal": {f16, f32, f64},
"uniform": {f16, f32, f64},
"unique": {b8, f16, f32, f64, i32, i64},
"unique_consecutive": {b8, f16, f32, f64, i32, i64},
# AssertionError: Tensor-likes are not close!
"nn.functional.triplet_margin_loss": {f16},
# The following 3 tests fail on CUDA with AssertionError: expected size 5==5, stride 5==1 at dim=0
# linalg._svd's return value has different strides on CUDA vs CPU which causes this
# In test_meta.py there is a mechanism to skipping strides checks for some ops
# (including _linalg_svd), possibly we should have something similar here
"linalg.cond": {f32, f64},
"linalg.svdvals": {f32, f64},
("norm", "nuc"): {f32, f64},
# AssertionError: Scalars are not close!
"nn.functional.soft_margin_loss": {f16},
"fft.fft": {b8, f16, f32, f64, i32, i64},
"fft.fft2": {b8, f16, f32, f64, i32, i64},
"fft.fftn": {b8, f16, f32, f64, i32, i64},
"fft.hfft": {b8, f16, f32, f64, i32, i64},
"fft.hfft2": {b8, f16, f32, f64, i32, i64},
"fft.hfftn": {b8, f16, f32, f64, i32, i64},
"fft.ifft": {f16, f32, f64, b8, i32, i64},
"fft.ifft2": {b8, f16, f32, f64, i32, i64},
"fft.ifftn": {b8, f16, f32, f64, i32, i64},
"fft.ihfft": {f16, f32, f64, b8, i32, i64},
"fft.ihfft2": {f16, f32, f64, b8, i32, i64},
"fft.ihfftn": {f16, f32, f64, b8, i32, i64},
"fft.irfft": {b8, f16, f32, f64, i32, i64},
"fft.irfft2": {b8, f16, f32, f64, i32, i64},
"fft.irfftn": {b8, f16, f32, f64, i32, i64},
"fft.rfft": {f16, f32, f64, b8, i32, i64},
"fft.rfft2": {f16, f32, f64},
"fft.rfftn": {f16, f32, f64},
# These return complex tensors
"cdouble": {b8, i32, i64, f16, f32, f64},
"cfloat": {b8, i32, i64, f16, f32, f64},
"chalf": {b8, i32, i64, f16, f32, f64},
"complex": {f16, f32, f64},
}
inductor_gradient_expected_failures_single_sample = defaultdict(dict)
inductor_gradient_expected_failures_single_sample["cuda"] = {
"asin": {f16},
"cumprod": {f16},
"linalg.vector_norm": {f64, f64},
"kron": {f16},
"nanquantile": {f32, f64},
"nn.functional.avg_pool2d": {f16, f32, f64},
("nn.functional.batch_norm", "without_cudnn"): {f16},
"nn.functional.batch_norm": {f16},
"nn.functional.cosine_similarity": {f16},
"nn.functional.instance_norm": {f16},
"nn.functional.normalize": {f16},
"nn.functional.softsign": {f16},
"nn.functional.local_response_norm": {f16},
"outer": {f16},
"quantile": {f32, f64},
"tanh": {f16},
}
inductor_should_fail_with_exception = defaultdict(dict)
inductor_should_fail_with_exception["cpu"] = {}
inductor_should_fail_with_exception["cuda"] = {
"__rpow__": {
i32: "Pow input must be floating point.",
i64: "Pow input must be floating point.",
}
}
def get_skips_and_xfails(from_dict, xfails=True):
retval = set()
for device, d in from_dict.items():
for op, dtypes in d.items():
if type(op) is tuple:
op, variant_name = op
else:
variant_name = ""
retval.add((op, variant_name, device, tuple(dtypes), xfails))
return retval
# Note: if you get a "AssertionError: Couldn't find OpInfo for ..." error for an OpInfo you are sure
# exists, you might be trying to use a test variant and you need to replace, for example,
# "max.reduction_no_dim" with ("max", "reduction_no_dim") as the key of one of these dictionaries
test_skips_or_fails = (
get_skips_and_xfails(inductor_skips, xfails=False)
| get_skips_and_xfails(inductor_expected_failures_single_sample, xfails=True)
| get_skips_and_xfails(
inductor_gradient_expected_failures_single_sample, xfails=True
)
)
def wrapper_set_seed(op, *args, **kwargs):
"""Wrapper to set seed manually for some functions like dropout
See: https://github.com/pytorch/pytorch/pull/62315#issuecomment-896143189 for more details.
"""
torch.manual_seed(42)
return op(*args, **kwargs)
torch.testing._internal.common_methods_invocations.wrapper_set_seed = wrapper_set_seed
# This file does a global patch to `disable_global_flags()` - which we should not invoke in non testing cases.
torch._dynamo.variables.torch.tensor_dunder_fns.append(
torch.testing._internal.common_utils.disable_functorch
)
# key can be either op_name, or (op_name, deivce_type), or (op_name, device_type, dtype)
inductor_override_kwargs = {
# the return value of empty is undefined
"empty": {"assert_equal": False},
"empty_permuted": {"assert_equal": False},
"empty_like": {"assert_equal": False},
"new_empty": {"assert_equal": False},
"new_empty_strided": {"assert_equal": False},
"randn": {"assert_equal": False},
("masked.softmin", "cuda", f16): {"atol": 1e-4, "rtol": 0.01},
("nn.functional.tanhshrink", "cuda", f16): {"atol": 3e-4, "rtol": 0.001},
("nn.functional.softmin", "cuda", f16): {"atol": 1e-4, "rtol": 0.01},
("special.log_ndtr", "cuda", f64): {"atol": 1e-6, "rtol": 1e-5},
("cummax", "cuda", f16): {"atol": 5e-4, "rtol": 0.002},
("softmax", "cuda", f16): {"atol": 1e-4, "rtol": 0.02},
("softmax", "cpu", f16): {"atol": 1e-4, "rtol": 0.02},
("_softmax_backward_data", "cuda", f16): {"atol": 0.008, "rtol": 0.002},
"gradient": {"check_gradient": False}, # segfault on check_gradient
# Following tests failed, and causing subsequent tests failing with unrecoverable CUDA error
"linalg.solve_triangular": {"check_gradient": False},
"linalg.lu_factor": {"check_gradient": False},
"linalg.lu_factor_ex": {"check_gradient": False},
}
# Always test with all sample for following ops
inductor_all_samples = {
"arange",
"softmax.with_dtype",
"index_add",
"index_copy",
"scatter_reduce.sum",
"select_scatter",
"squeeze",
"unsqueeze",
"sum",
"amax",
"amin",
"all",
"T",
"H",
"isinf",
"isposinf",
"isneginf",
"nan_to_num",
"mT",
"mH",
"rsub",
"triu",
}
class TestInductorOpInfo(TestCase):
check_model = check_model
check_model_cuda = check_model_cuda
@onlyNativeDeviceTypes
@suppress_warnings
@skipCUDAMemoryLeakCheckIf(
True
) # inductor kernels failing this test intermittently
@skipCUDAIf(not HAS_CUDA, "Skipped! Triton not found")
@skipCPUIf(not HAS_CPU, "Skipped! Supported CPU compiler not found")
@skipIfTorchDynamo("Test uses dynamo already")
@skipIfCrossRef
@_ops(op_db[START:END])
@skipOps("TestInductorOpInfo", "test_comprehensive", test_skips_or_fails)
@patch("torch._dynamo.config.raise_on_unsafe_aot_autograd", True)
@torch._inductor.config.patch(
{"implicit_fallbacks": False, "triton.autotune_pointwise": False}
)
def test_comprehensive(self, device, dtype, op):
torch._dynamo.reset()
with torch.no_grad():
torch.cuda.empty_cache()
op_name = op.name
if op.variant_test_name:
op_name += f".{op.variant_test_name}"
device_type = torch.device(device).type
assert device_type in ("cuda", "cpu")
# with open("test_output.txt", "a") as f:
# print(f"CONSIDERING OP {op_name} on {device_type} with {dtype} |
# {inductor_skips[device_type].get(op_name, set())}", flush=True, file=f)
# print(f"CONSIDERING OP {op_name} on {device_type} with {dtype} |
# {inductor_skips[device_type].get(op_name, set())}", flush=True)
if dtype in inductor_skips[device_type].get(op_name, set()):
test_expect = ExpectedTestResult.SKIP
# with open("test_output.txt", "a") as f:
# print(f"SKIPPING OP {op_name} on {device_type}", flush=True, file=f)
# print(f"SKIPPING OP {op_name} on {device_type}", flush=True)
elif dtype in inductor_expected_failures_single_sample[device_type].get(
op_name, set()
) or dtype in inductor_gradient_expected_failures_single_sample[
device_type
].get(
op_name, set()
):
test_expect = ExpectedTestResult.XFAILURE
else:
test_expect = ExpectedTestResult.SUCCESS
overridden_kwargs = {}
if op_name in inductor_override_kwargs:
overridden_kwargs = inductor_override_kwargs[op_name]
elif (op_name, device_type) in inductor_override_kwargs:
overridden_kwargs = inductor_override_kwargs[(op_name, device_type)]
elif (op_name, device_type, dtype) in inductor_override_kwargs:
overridden_kwargs = inductor_override_kwargs[(op_name, device_type, dtype)]
func = op.get_op()
def fn(*args, **kwargs):
return func(*args, **kwargs)
requires_grad = (
op.supports_autograd
and dtype in op.supported_backward_dtypes(device_type)
# TODO: OpInfo really ought to error out for this case, but it's
# not exercised in test_ops_gradients atm. The problem is not
# complex32 per-se (which is supported by data movement only ops)
# but that when we do backwards we expect other ops like add to work
and not dtype == torch.complex32
)
samples = op.sample_inputs(device, dtype, requires_grad=requires_grad)
if op_name not in inductor_all_samples and not ALL_SAMPLES:
if isinstance(samples, (list, tuple)):
samples = [samples[0]]
else:
samples = [next(samples)]
try:
for sample_input in samples:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
# UNCOMMENT TO DEBUG SEGFAULTS
# with open("test_output.txt", "a") as f:
# print(f"RUNNING OP {op_name} on {device_type} with {dtype}", flush=True, file=f)
# print(f"RUNNING OP {op_name} on {device_type} with {dtype}", flush=True)
if device_type == "cuda":
# opinfo test case have already place the input on the correct device
# so we don't need do additional copy by setting copy_to_cuda=False
adjusted_kwargs = {
"check_lowp": False,
"nopython": True,
"copy_to_cuda": False,
"reference_in_float": False,
"check_gradient": requires_grad,
}
adjusted_kwargs.update(overridden_kwargs)
self.check_model_cuda(
fn,
args,
kwargs,
**adjusted_kwargs,
)
elif device_type == "cpu":
adjusted_kwargs = {
"check_lowp": False,
"nopython": True,
# skip checking gradient on CPU for now
"check_gradient": False,
}
adjusted_kwargs.update(overridden_kwargs)
self.check_model(
fn,
args,
kwargs,
**adjusted_kwargs,
)
except Exception as e:
if test_expect is ExpectedTestResult.XFAILURE:
raise e
seen_failed[device_type].setdefault(op_name, set()).add(dtype)
if COLLECT_EXPECT:
return
known_failure = False
if dtype in inductor_should_fail_with_exception[device_type].get(
op_name, set()
):
failure = inductor_should_fail_with_exception[device_type][op_name][
dtype
]
if failure in str(e):
known_failure = True
if not known_failure:
raise e
# with open("test_output.txt", "a") as f:
# print(f"SUCCEEDED OP {op_name} on {device_type} with {dtype}", flush=True, file=f)
seen_succeeded[device_type].setdefault(op_name, set()).add(dtype)
if test_expect is ExpectedTestResult.XFAILURE and not COLLECT_EXPECT:
if FAIL_ON_SUCCESS:
raise RuntimeError(
f"unexpected success {op_name}, {dtype}, {device_type}"
)
instantiate_device_type_tests(TestInductorOpInfo, globals())
if __name__ == "__main__":
run_tests()