forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_multihead_attention.py
693 lines (594 loc) · 34.9 KB
/
test_multihead_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
# Owner(s): ["module: nn"]
import contextlib
import random
import unittest
import unittest.mock as mock
from torch.nn import MultiheadAttention
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, \
onlyCUDA
from torch.testing._internal.common_nn import NNTestCase
from torch.testing._internal.common_utils import run_tests, \
TEST_NUMPY, TEST_WITH_CROSSREF, \
parametrize as parametrize_test, instantiate_parametrized_tests
import torch.nn as nn
import torch
if TEST_NUMPY:
import numpy as np
# WARNING: If you add a new top-level test case to this file, you MUST
# update test/run_test.py to list it, otherwise it will NOT be run in
# CI.
class TestMultiheadAttentionNN(NNTestCase):
_do_cuda_memory_leak_check = True
_do_cuda_non_default_stream = True
@unittest.skipIf(not TEST_NUMPY, "numpy not found")
@parametrize_test("average_attn_weights", [True, False])
def test_multihead_attention(self, average_attn_weights):
def _scaled_dot_attn_ref(Q, K, V, dims, unseen_mask=None, key_padding_mask=None,
average_attn_weights=average_attn_weights):
""" Numpy-based reference implementation of scaled dot attention
for testing"""
QKT = _batchmatmul(
Q,
np.transpose(K, axes=[0, 1, 3, 2])
/ np.sqrt(dims[3], dtype=np.float32), # divide by sqrt(d_head)
)
b1, b2, s1, s2 = QKT.shape
if unseen_mask is not None or key_padding_mask is not None:
# assert s1 == s2
for i in range(b1):
for j in range(b2):
for m in range(s1):
for n in range(s2):
if unseen_mask is not None and unseen_mask[m][n] == 0:
QKT[i, j, m, n] = -np.inf
if key_padding_mask is not None and key_padding_mask[i][n]:
QKT[i, j, m, n] = -np.inf
reference = _softmax(QKT)
ref_attn_weight = reference
if average_attn_weights:
ref_attn_weight = np.sum(ref_attn_weight, axis=1) / b2
reference = _batchmatmul(reference, V)
return reference, ref_attn_weight
def _batchmatmul(a, b): # batchmatmul over 4 dim matrix
""" Numpy-based batch matrix multiply over 4 dim matrix"""
assert a.shape[0] == b.shape[0]
assert a.shape[1] == b.shape[1]
retval = np.zeros(
(a.shape[0], a.shape[1], a.shape[2], b.shape[3]), dtype=np.float32
)
for i in range(a.shape[0]):
for j in range(a.shape[1]):
retval[i, j, :, :] = np.matmul(a[i, j, :, :], b[i, j, :, :])
return retval
def _softmax(x): # softmax over 4 dim matrix
""" Numpy-based reference softmax over 4 dim matrix"""
np.seterr(invalid='ignore')
output = np.zeros(x.shape, dtype=np.float64)
for i in range(x.shape[0]):
for j in range(x.shape[1]):
for k in range(x.shape[2]):
x_curr = x[i, j, k, :]
e_x = np.exp(x_curr - np.amax(x_curr))
output[i, j, k, :] = e_x / np.sum(e_x)
return output
def _split_heads_ref(X, dims, nheads, d_head):
X_split = np.reshape(X, dims[:2] + [nheads, d_head])
X_split_transposed = np.transpose(X_split, [0, 2, 1, 3])
reference = np.reshape(X_split_transposed, [dims[0], nheads, dims[1], d_head])
return reference
def _combine_heads_ref(X, dims, nheads, d_head):
X_transposed = np.transpose(X, [0, 2, 1, 3])
reference = np.reshape(X_transposed, dims[:2] + [nheads * d_head])
return reference
def _fc(X, X_weight, X_bias):
X_fc_b = X_bias.detach().numpy()
X_fc_w = X_weight.detach().numpy()
return np.matmul(X, np.transpose(X_fc_w)) + X_fc_b
def _create_src_lengths_mask(batch_size, src_lengths):
"""
Generate boolean mask to prevent attention beyond the end of source
Inputs:
batch_size : int
src_lengths : [batch_size] of sentence lengths
Outputs:
[batch_size, max_src_len]
"""
max_srclen = src_lengths.max()
src_indices = torch.arange(0, max_srclen).unsqueeze(0).to(src_lengths)
src_indices = src_indices.expand(batch_size, max_srclen)
src_lengths = src_lengths.unsqueeze(dim=1).expand(batch_size, max_srclen)
# returns [batch_size, max_seq_len]
return (src_indices < src_lengths).int().detach()
def _multihead_attn_test_helper(add_key_padding_mask=False, add_bias_kv=False, add_zero_attn=False,
saved_kv=False, same_embed_dim=False,
average_attn_weights=average_attn_weights):
for _ in range(100):
batch_sz, seq_len = [random.randint(2, 10) for r in range(2)]
d_head = random.randint(3, 10)
nheads = random.randint(2, 5) * 2
d_model = d_head * nheads
if same_embed_dim:
kv_dim = d_model
else:
kv_dim = random.randint(5, 20)
dims = [batch_sz, seq_len, kv_dim]
saved_k = None
saved_k_tensor = None
saved_v = None
saved_v_tensor = None
if saved_kv:
saved_k = np.random.rand(batch_sz * nheads, seq_len, d_head)
saved_k_tensor = torch.from_numpy(saved_k).to(torch.get_default_dtype())
saved_v = np.random.rand(batch_sz * nheads, seq_len, d_head)
saved_v_tensor = torch.from_numpy(saved_v).to(torch.get_default_dtype())
key_padding_mask = None
key_padding_mask_tensor = None
if add_key_padding_mask:
seq_mask = np.random.randint(0, 2, (1, seq_len))
key_padding_mask = (np.repeat(seq_mask, batch_sz, axis=0) == 1)
key_padding_mask_tensor = torch.from_numpy(key_padding_mask)
decoder_state = np.random.rand(batch_sz, d_model)
K = np.random.rand(*dims)
V = K
Q = np.expand_dims(decoder_state, 1)
attn_mask = np.random.randint(0, 2, size=(1, seq_len))
attn_mask_tensor = torch.from_numpy(attn_mask).float()
attn_mask_tensor.masked_fill_(attn_mask_tensor == 0, float('-inf'))
attn_mask_tensor.masked_fill_(attn_mask_tensor > 0, float('0.0'))
attn_mask_tensor = attn_mask_tensor.double()
decoder_state_tensor = torch.from_numpy(decoder_state).to(torch.get_default_dtype())
source_hid_tensor = torch.from_numpy(K).to(torch.get_default_dtype()).transpose(0, 1)
multihead_attn_module = MultiheadAttention(d_model, nheads,
add_bias_kv=add_bias_kv,
add_zero_attn=add_zero_attn,
kdim=kv_dim, vdim=kv_dim)
if add_bias_kv:
bias_k = multihead_attn_module.bias_k.detach().numpy()
bias_v = multihead_attn_module.bias_v.detach().numpy()
else:
bias_k = None
bias_v = None
_Q = decoder_state_tensor.unsqueeze(1).transpose(0, 1)
_V = source_hid_tensor
_K = source_hid_tensor
if multihead_attn_module._qkv_same_embed_dim:
result, result_weight = torch.nn.functional.multi_head_attention_forward(
_Q, _K, _V,
d_model, nheads,
multihead_attn_module.in_proj_weight, multihead_attn_module.in_proj_bias,
multihead_attn_module.bias_k, multihead_attn_module.bias_v,
multihead_attn_module.add_zero_attn, multihead_attn_module.dropout,
multihead_attn_module.out_proj.weight, multihead_attn_module.out_proj.bias,
multihead_attn_module.training, key_padding_mask_tensor, True, attn_mask_tensor,
static_k=saved_k_tensor, static_v=saved_v_tensor,
average_attn_weights=average_attn_weights,
is_causal=False,
)
else:
result, result_weight = torch.nn.functional.multi_head_attention_forward(
_Q, _K, _V,
d_model, nheads,
None, multihead_attn_module.in_proj_bias,
multihead_attn_module.bias_k, multihead_attn_module.bias_v,
multihead_attn_module.add_zero_attn, multihead_attn_module.dropout,
multihead_attn_module.out_proj.weight, multihead_attn_module.out_proj.bias,
multihead_attn_module.training, key_padding_mask_tensor, True, attn_mask_tensor,
True, multihead_attn_module.q_proj_weight,
multihead_attn_module.k_proj_weight, multihead_attn_module.v_proj_weight,
static_k=saved_k_tensor, static_v=saved_v_tensor,
average_attn_weights=average_attn_weights,
is_causal=False,
)
result = result.squeeze(0).detach().numpy()
if multihead_attn_module._qkv_same_embed_dim:
q_proj_weight = multihead_attn_module.in_proj_weight[:d_model]
k_proj_weight = multihead_attn_module.in_proj_weight[d_model:(d_model * 2)]
v_proj_weight = multihead_attn_module.in_proj_weight[(d_model * 2):]
else:
q_proj_weight = multihead_attn_module.q_proj_weight
k_proj_weight = multihead_attn_module.k_proj_weight
v_proj_weight = multihead_attn_module.v_proj_weight
Q_fc = _fc(Q, q_proj_weight, multihead_attn_module.in_proj_bias[:d_model])
K_fc = _fc(K, k_proj_weight, multihead_attn_module.in_proj_bias[d_model:(d_model * 2)])
V_fc = _fc(V, v_proj_weight, multihead_attn_module.in_proj_bias[(d_model * 2):])
if add_bias_kv:
K_fc = np.concatenate((K_fc, np.repeat(bias_k, K_fc.shape[0], axis=0)), axis=1)
V_fc = np.concatenate((V_fc, np.repeat(bias_v, V_fc.shape[0], axis=0)), axis=1)
if attn_mask is not None:
attn_mask = np.concatenate((attn_mask, np.ones([1, 1])), axis=1)
if key_padding_mask is not None:
key_padding_mask = np.concatenate(
(key_padding_mask, np.full((batch_sz, 1), False, dtype=bool)), axis=1)
dims[1] += 1
Q_split = _split_heads_ref(
Q_fc, [batch_sz, 1, d_model], nheads, d_head
)
if saved_k is not None:
K_split = np.reshape(saved_k, [dims[0], nheads, dims[1], d_head])
else:
K_split = _split_heads_ref(K_fc, dims, nheads, d_head)
if saved_v is not None:
V_split = np.reshape(saved_v, [dims[0], nheads, dims[1], d_head])
else:
V_split = _split_heads_ref(V_fc, dims, nheads, d_head)
if add_zero_attn:
dims[1] += 1
K_split = np.concatenate(
(K_split, np.zeros([K_split.shape[0], K_split.shape[1], 1, K_split.shape[3]])), axis=2)
V_split = np.concatenate(
(V_split, np.zeros([V_split.shape[0], V_split.shape[1], 1, V_split.shape[3]])), axis=2)
if attn_mask is not None:
attn_mask = np.concatenate((attn_mask, np.ones([1, 1])), axis=1)
if key_padding_mask is not None:
key_padding_mask = np.concatenate(
(key_padding_mask, np.full((batch_sz, 1), False, dtype=bool)), axis=1)
attn_heads, ref_attn_weight = _scaled_dot_attn_ref(
Q=Q_split,
K=K_split,
V=V_split,
dims=Q_split.shape,
unseen_mask=attn_mask,
key_padding_mask=key_padding_mask
)
combined_attn_heads = _combine_heads_ref(
X=attn_heads, dims=[batch_sz, 1], nheads=nheads, d_head=d_head
)
reference = _fc(combined_attn_heads, multihead_attn_module.out_proj.weight,
multihead_attn_module.out_proj.bias)
reference = np.squeeze(reference, axis=1)
# result = reference
self.assertEqual(tuple(result.shape), (batch_sz, d_model))
np.testing.assert_allclose(result, reference, atol=1e-5)
# result_weight = ref_attn_weight
result_weight = result_weight.detach().numpy()
self.assertEqual(tuple(result_weight.shape), tuple(ref_attn_weight.shape))
np.testing.assert_allclose(result_weight, ref_attn_weight, atol=1e-5)
def test_multihead_attn_add_bias_kv():
_multihead_attn_test_helper(add_bias_kv=True)
def test_multihead_attn_add_zero_attn():
_multihead_attn_test_helper(add_zero_attn=True)
def test_multihead_attn_no_masking():
_multihead_attn_test_helper()
def test_multihead_attn_key_padding_mask():
_multihead_attn_test_helper(add_key_padding_mask=True)
def test_multihead_attn_saved_kv():
_multihead_attn_test_helper(saved_kv=True)
def test_multihead_attn_add_bias_kv_zero_attn():
_multihead_attn_test_helper(add_key_padding_mask=True, add_bias_kv=True,
add_zero_attn=True)
def test_multihead_attn_all_arguments1():
_multihead_attn_test_helper(add_key_padding_mask=True, add_zero_attn=True, saved_kv=True)
def test_multihead_attn_all_arguments2():
_multihead_attn_test_helper(add_key_padding_mask=True, add_bias_kv=True,
add_zero_attn=True, saved_kv=True)
def test_multihead_attn_all_arguments3():
_multihead_attn_test_helper(add_key_padding_mask=True, add_zero_attn=True,
saved_kv=True, same_embed_dim=True)
test_multihead_attn_add_zero_attn() # Test MultiheadAttention with add_zero_attn
test_multihead_attn_add_bias_kv() # Test MultiheadAttention with add_bias_kv
test_multihead_attn_no_masking() # Test MultiheadAttention without masking
test_multihead_attn_key_padding_mask() # Test MultiheadAttention with src lengths
test_multihead_attn_saved_kv() # Test MultiheadAttention with static kv.
test_multihead_attn_add_bias_kv_zero_attn() # Test MultiheadAttention with bias_kv and zero_attn.
test_multihead_attn_all_arguments1() # Test MultiheadAttention with all the argument.
with self.assertRaisesRegex(AssertionError, "bias cannot be added to static key."):
test_multihead_attn_all_arguments2() # Test MultiheadAttention with all the argument.
test_multihead_attn_all_arguments3() # Test MultiheadAttention with all the argument.
def test_multihead_attn_3d_attn_mask(self):
embed_dim = 8
num_heads = 4
batch_size = 8
src_len = 3
tgt_len = 2
query = torch.rand(batch_size, tgt_len, embed_dim) # [N, T, D]
key = torch.rand(batch_size, src_len, embed_dim) # [N, S, D]
value = key # [N, S, D]
attn_mask = torch.randint(0, 2, (batch_size, tgt_len, src_len)).float() # [N, T, S]
attn_mask = attn_mask.masked_fill(attn_mask == 0, float('-inf')).masked_fill(attn_mask == 1, float(0.0))
mta_model = torch.nn.MultiheadAttention(embed_dim, num_heads)
# Generate 3D results
attn_mask_3d = torch.repeat_interleave(attn_mask, num_heads, dim=0) # [N * H, T, S]
output_3d = mta_model(query.transpose(0, 1), key.transpose(
0, 1), value.transpose(0, 1), attn_mask=attn_mask_3d)[0]
output_3d = output_3d.transpose(0, 1) # [N, T, D]
for i in range(0, batch_size):
output_2d = mta_model(query[i].unsqueeze(0).transpose(0, 1),
key[i].unsqueeze(0).transpose(0, 1),
value[i].unsqueeze(0).transpose(0, 1),
attn_mask=attn_mask[i])[0]
# output_2d in shape of [T, 1, D]
self.assertEqual(output_3d[i].unsqueeze(0).transpose(0, 1), output_2d)
def test_multihead_attn_no_bias(self):
embed_dim = 8
num_heads = 4
mha = torch.nn.MultiheadAttention(embed_dim, num_heads, bias=False)
# Verify that bias=False applies to both in and out projection layers.
self.assertIsNone(mha.in_proj_bias)
self.assertIsNone(mha.out_proj.bias)
def _test_multihead_attn_invalid_shape_impl(self, mha):
# Batched (3D) query cases
query = torch.randn(4, 4, 4)
key = torch.randn(4, 4, 4)
value = torch.randn(4, 4, 4)
msg = "expected `key` and `value` to be 3-D but found 2-D and 3-D tensors respectively"
# 3D query, 2D key and 3D value
with self.assertRaisesRegex(AssertionError, msg):
mha(query, torch.randn(4, 4), value)
msg = "expected `key` and `value` to be 3-D but found 3-D and 2-D tensors respectively"
# 3D query, 3D key and 2D value
with self.assertRaisesRegex(AssertionError, msg):
mha(query, key, torch.randn(4, 4))
msg = "expected `key_padding_mask` to be `None` or 2-D but found 1-D tensor instead"
# 3D query, 3D key, 3D value and 1D key_padding_mask
with self.assertRaisesRegex(AssertionError, msg):
mha(query, key, value, key_padding_mask=torch.tensor([False, False, True, True], dtype=torch.bool))
msg = "expected `attn_mask` to be `None`, 2-D or 3-D but found 1-D tensor instead"
# 3D query, 3D key, 3D value and 1D attn_mask
with self.assertRaisesRegex(AssertionError, msg):
mha(query, key, value, attn_mask=torch.tensor([False, False, True, True], dtype=torch.bool))
# Unbatched (2D) query cases
query = torch.randn(4, 4)
key = torch.randn(4, 4)
value = torch.randn(4, 4)
msg = "expected `key` and `value` to be 2-D but found 3-D and 2-D tensors respectively"
# 2D query, 3D key and 2D value
with self.assertRaisesRegex(AssertionError, msg):
mha(query, torch.randn(4, 4, 4), value)
msg = "expected `key` and `value` to be 2-D but found 2-D and 3-D tensors respectively"
# 2D query, 3D key and 2D value
with self.assertRaisesRegex(AssertionError, msg):
mha(query, key, torch.randn(4, 4, 4))
msg = "expected `key_padding_mask` to be `None` or 1-D but found 2-D tensor instead"
# 2D query, 2D key, 2D value and 1D key_padding_mask
with self.assertRaisesRegex(AssertionError, msg):
mha(query, key, value, key_padding_mask=torch.tensor([[False, False, True, True] * 2], dtype=torch.bool))
msg = "expected `attn_mask` to be `None`, 2-D or 3-D but found 1-D tensor instead"
# 2D query, 2D key, 2D value and 1D attn_mask
with self.assertRaisesRegex(AssertionError, msg):
mha(query, key, value, attn_mask=torch.tensor([False, False, True, True], dtype=torch.bool))
msg = r"Expected `attn_mask` shape to be \(4, 4, 4\)"
# 2D query, 2D key, 2D value and 3D incorrect attn_mask
with self.assertRaisesRegex(AssertionError, msg):
mha(query, key, value, attn_mask=torch.randn(5, 4, 4).bernoulli_().to(torch.bool))
def test_multihead_attn_invalid_shape(self):
mha = torch.nn.MultiheadAttention(4, 4)
self._test_multihead_attn_invalid_shape_impl(mha)
# Give the test a chance to hit the fast path. (Right now, it
# won't, but gating may be less restricted in the future.)
with torch.no_grad():
self._test_multihead_attn_invalid_shape_impl(mha.eval())
@torch.no_grad()
def test_multihead_attn_fast_path_invalid_shape(self):
mha = torch.nn.MultiheadAttention(4, 4, batch_first=True).eval()
# Batched (3D) query cases
query = torch.randn(4, 4, 4)
key = torch.randn(4, 4, 4)
value = torch.randn(4, 4, 4)
# Currently, this case will just go to the slow path and get
# the usual message because it fails the requirement to be
# batched.
msg = "expected `key` and `value` to be 3-D but found 2-D and 3-D tensors respectively"
# 3D query, 2D key and 3D value
with self.assertRaisesRegex(AssertionError, msg):
mha(query, torch.randn(3, 3), value, need_weights=False)
# Currently, this case will just go to the slow path and get
# the usual message because it fails the requirement to be
# batched.
msg = "expected `key` and `value` to be 3-D but found 3-D and 2-D tensors respectively"
# 3D query, 3D key and 2D value
with self.assertRaisesRegex(AssertionError, msg):
mha(query, key, torch.randn(3, 3), need_weights=False)
msg = "expected `key_padding_mask` to be `None` or 2-D but found 1-D tensor instead"
# 3D query, 3D key, 3D value and 1D key_padding_mask
with self.assertRaisesRegex(AssertionError, msg):
mha(query, key, value, key_padding_mask=torch.tensor(
[False, True, True], dtype=torch.bool), need_weights=False)
msg = "expected `attn_mask` to be `None`, 2-D or 3-D but found 1-D tensor instead"
# 3D query, 3D key, 3D value and 1D attn_mask
with self.assertRaisesRegex(AssertionError, msg):
mha(query, key, value, attn_mask=torch.tensor([False, True, True], dtype=torch.bool), need_weights=False)
# Unbatched (2D) query cases
# NOTE: error messages are the same as regular path because the fast path doesn't support 2D.
query = torch.randn(4, 4)
key = torch.randn(4, 4)
value = torch.randn(4, 4)
msg = "expected `key` and `value` to be 2-D but found 3-D and 2-D tensors respectively"
# 2D query, 3D key and 2D value
with self.assertRaisesRegex(AssertionError, msg):
mha(query, torch.randn(4, 4, 4), value)
msg = "expected `key` and `value` to be 2-D but found 2-D and 3-D tensors respectively"
# 2D query, 3D key and 2D value
with self.assertRaisesRegex(AssertionError, msg):
mha(query, key, torch.randn(4, 4, 4))
msg = "expected `key_padding_mask` to be `None` or 1-D but found 2-D tensor instead"
# 2D query, 2D key, 2D value and 1D key_padding_mask
with self.assertRaisesRegex(AssertionError, msg):
mha(query, key, value, key_padding_mask=torch.tensor([[False, False, True, True] * 2], dtype=torch.bool))
msg = "expected `attn_mask` to be `None`, 2-D or 3-D but found 1-D tensor instead"
# 2D query, 2D key, 2D value and 1D attn_mask
with self.assertRaisesRegex(AssertionError, msg):
mha(query, key, value, attn_mask=torch.tensor([False, False, True, True], dtype=torch.bool))
msg = r"Expected `attn_mask` shape to be \(4, 4, 4\)"
# 2D query, 2D key, 2D value and 3D incorrect attn_mask
with self.assertRaisesRegex(AssertionError, msg):
mha(query, key, value, attn_mask=torch.randn(5, 4, 4).bernoulli_().to(torch.bool))
def test_multihead_attn_nested_tensor_outside_fast_path(self):
mha = torch.nn.MultiheadAttention(4, 4, batch_first=True).eval()
nt = torch.nested.nested_tensor([torch.randn(4, 4)])
# One tested platform (linux-bionic-py3.7-clang) has a torch_function for one
# or more of these. Take advantage of that to test the torch_function bailout.
has_torch_func = torch.overrides.has_torch_function(
(nt, mha.in_proj_weight, mha.in_proj_bias, mha.out_proj.weight, mha.out_proj.bias))
if has_torch_func:
msg = "MultiheadAttention does not support NestedTensor.*argument has_torch_function"
else:
msg = ("MultiheadAttention does not support NestedTensor outside of its fast path.*grad is " +
"enabled and.*or biases requires_grad")
with self.assertRaisesRegex(AssertionError, msg):
mha(nt, nt, nt)
if has_torch_func:
# Just give up, they're all going to fail with the same message.
return
with torch.no_grad():
mha(nt, nt, nt)
with torch.inference_mode():
mha(nt, nt, nt)
nt = torch.nested.nested_tensor([torch.randn(4, 4, requires_grad=False)])
nt.requires_grad = False
with self.assertRaisesRegex(AssertionError, msg):
mha(nt, nt, nt)
mha.in_proj_weight.requires_grad = False
mha.in_proj_bias.requires_grad = False
mha.out_proj.weight.requires_grad = False
mha.out_proj.bias.requires_grad = False
mha(nt, nt, nt)
class TestMultiheadAttentionNNDeviceType(NNTestCase):
def test_multihead_self_attn_two_masks_fast_path(self, device):
"""
Multihead self-attention should give the same result on the fast path (BetterTransformer) as on the slow path
when both attention mask (mask type 0) and key padding mask (mask type 1) are provided
"""
with torch.no_grad():
embed_dim = 14
num_heads = 7
batch_size = 8
src_len = 5
query = value = key = torch.rand(batch_size, src_len, embed_dim).to(device)
# Create masks of two different types
attn_mask = torch.randint(0, 2, (src_len, src_len)).bool().to(device)
key_padding_mask = torch.randint(0, 2, (batch_size, src_len)).bool().to(device)
# We'll need expanded versions of the masks for masking out the outputs below
attn_mask_expanded = attn_mask.reshape(1, 1, src_len, src_len) \
.expand(batch_size, num_heads, src_len, src_len)
key_padding_mask_expanded = key_padding_mask.reshape(batch_size, 1, 1, src_len) \
.expand(batch_size, num_heads, src_len, src_len)
merged_mask = attn_mask_expanded.logical_or(key_padding_mask_expanded)
# Compute attention on the fast path
mta_model = torch.nn.MultiheadAttention(embed_dim, num_heads, batch_first=True, device=device)
mta_model.training = False
result_fast_path, _ = mta_model(query, key, value, attn_mask=attn_mask, key_padding_mask=key_padding_mask)
# Compute attention on the slow path
result_ref, _ = torch.nn.functional.multi_head_attention_forward(query.transpose(0, 1),
key.transpose(0, 1),
value.transpose(0, 1),
embed_dim, num_heads,
mta_model.in_proj_weight,
mta_model.in_proj_bias,
mta_model.bias_k, mta_model.bias_v,
mta_model.add_zero_attn,
mta_model.dropout,
mta_model.out_proj.weight,
mta_model.out_proj.bias,
training=mta_model.training,
key_padding_mask=key_padding_mask,
need_weights=False,
attn_mask=attn_mask,
use_separate_proj_weight=False,
q_proj_weight=mta_model.q_proj_weight,
k_proj_weight=mta_model.k_proj_weight,
v_proj_weight=mta_model.v_proj_weight,
average_attn_weights=False,
)
result_ref = result_ref.transpose(0, 1) # Convert to batch-first
# Rows which are completely masked out are nan, we need to exclude them from comparison
mask_out = merged_mask[:, 0, :, :].all(-1, keepdim=True).expand(batch_size, src_len, embed_dim)
result_fast_path_masked = result_fast_path.masked_fill(mask_out, 0)
result_ref_masked = result_ref.masked_fill(mask_out, 0)
self.assertEqual(result_fast_path_masked, result_ref_masked)
@torch.no_grad()
@unittest.skipIf(TEST_WITH_CROSSREF, 'CrossRef turns on TorchFunctionMode, and so disables fastpath.')
def test_multihead_self_attn_two_masks_fast_path_mock(self, device):
"""
Multihead self-attention should take fast path when both attention mask (mask type 0)
and key padding mask (mask type 1) are provided at the same time on CPU and CUDA
"""
if device not in ['cpu', 'cuda']:
self.skipTest("Fastpath only runs on CPU and CUDA.")
with torch.autocast(device_type=device, enabled=False):
embed_dim = 14
num_heads = 7
batch_size = 8
src_len = 5
query = value = key = torch.rand(batch_size, src_len, embed_dim).to(device)
# Create masks of two different types
attn_mask = torch.randint(0, 2, (src_len, src_len)).bool().to(device)
key_padding_mask = torch.randint(0, 2, (batch_size, src_len)).bool().to(device)
with mock.patch('torch._native_multi_head_attention') as fastpath_mock:
# Compute attention on the fast path
mta_model = torch.nn.MultiheadAttention(embed_dim, num_heads, batch_first=True, device=device).eval()
mta_model.training = False
mta_model(query, key, value, attn_mask=attn_mask, key_padding_mask=key_padding_mask)
# If mock was called, fastpath was taken
self.assertTrue(fastpath_mock.called)
@onlyCUDA
@dtypes(torch.half, torch.float, torch.double)
def test_multihead_attention_dtype(self, device, dtype):
embed_dim = 128
num_heads = 8
sl = 10
bs = 8
model = nn.MultiheadAttention(embed_dim, num_heads).cuda().to(dtype)
q = torch.randn(sl, bs, embed_dim, device=device, dtype=dtype)
k = torch.randn(sl, bs, embed_dim, device=device, dtype=dtype)
v = torch.randn(sl, bs, embed_dim, device=device, dtype=dtype)
out = model(q, k, v)
self.assertEqual(q.size(), out[0].size())
self.assertEqual(dtype, out[0].dtype)
@onlyCUDA
@dtypes(torch.half, torch.float, torch.double)
def test_multihead_attention_dtype_batch_first(self, device, dtype):
embed_dim = 128
num_heads = 8
sl = 10
bs = 8
# With batch_first=True, we have the possibility of hitting
# the native fast path if we call .eval() and enable inference
# mode. Test both paths.
for training in (True, False):
model = nn.MultiheadAttention(embed_dim, num_heads, batch_first=True).cuda().to(dtype)
if not training:
model = model.eval()
cm = torch.no_grad()
else:
cm = contextlib.nullcontext()
with cm:
q = torch.randn(bs, sl, embed_dim, device=device, dtype=dtype)
k = torch.randn(bs, sl, embed_dim, device=device, dtype=dtype)
v = torch.randn(bs, sl, embed_dim, device=device, dtype=dtype)
# fast path currently doesn't support weights
out = model(q, k, v, need_weights=False)
self.assertEqual(q.size(), out[0].size())
self.assertEqual(dtype, out[0].dtype)
@dtypes(torch.double)
@torch.no_grad()
def test_multihead_attn_fast_path_query_and_bias_have_different_dtypes(self, device, dtype):
mha = torch.nn.MultiheadAttention(4, 4, batch_first=True, dtype=dtype, device=device).eval()
mha.in_proj_bias = torch.nn.Parameter(mha.in_proj_bias.to(torch.half).to(device))
query = torch.randn(4, 4, 4, dtype=dtype, device=device)
mha(query, query, query)
@dtypes(torch.double)
@torch.no_grad()
def test_multihead_attn_fast_path_small_test(self, device, dtype):
mha = torch.nn.MultiheadAttention(4, 4, batch_first=True, dtype=dtype, device=device).eval()
query = torch.randn(4, 4, 4, dtype=dtype, device=device)
mha(query, query, query)
@dtypes(torch.double)
@torch.no_grad()
def test_multihead_attn_in_proj_bias_none(self, device, dtype):
mha = torch.nn.MultiheadAttention(2, 2, bias=False, dtype=dtype, device=device)
query = torch.rand(2, 2, 2, dtype=dtype, device=device)
mha(query, query, query)
@dtypes(torch.double)
@torch.no_grad()
def test_multihead_attn_in_proj_weight_none(self, device, dtype):
# Setting kdim == vdim == 2 means that vdim != embed_dim
# will cause the logic to use per-input project weights, thereby
# forcing self.in_proj_weight = None
mha = torch.nn.MultiheadAttention(4, 4, vdim=2, kdim=2, dtype=dtype, device=device)
query = torch.rand(4, 4, 4, dtype=dtype, device=device)
key = torch.rand(4, 4, 2, dtype=dtype, device=device)
mha(query, key, key)
instantiate_device_type_tests(TestMultiheadAttentionNNDeviceType, globals())
instantiate_parametrized_tests(TestMultiheadAttentionNN)
if __name__ == '__main__':
run_tests()