This repository was archived by the owner on Sep 24, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_torch.py
202 lines (165 loc) · 6.36 KB
/
test_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import wandb
import pytest
import sys
try:
import torch
import torch.nn as nn
import torch.nn.functional as F
except ImportError:
class nn():
Module = object
pytestmark = pytest.mark.skipif(sys.version_info < (3, 5),
reason="PyTorch no longer supports py2")
def dummy_torch_tensor(size, requires_grad=True):
return torch.ones(size, requires_grad=requires_grad)
class DynamicModule(nn.Module):
def __init__(self):
super(DynamicModule, self).__init__()
self.choices = nn.ModuleDict({
'conv': nn.Conv2d(10, 10, 3),
'pool': nn.MaxPool2d(3)
})
self.activations = nn.ModuleDict([
['lrelu', nn.LeakyReLU()],
['prelu', nn.PReLU()]
])
def forward(self, x, choice, act):
x = self.choices[choice](x)
x = self.activations[act](x)
return x
class Discrete(nn.Module):
def __init__(self):
super(Discrete, self).__init__()
def forward(self, x):
return nn.functional.softmax(x, dim=0)
class DiscreteModel(nn.Module):
def __init__(self, num_outputs=2):
super(DiscreteModel, self).__init__()
self.linear1 = nn.Linear(1, 10)
self.linear2 = nn.Linear(10, num_outputs)
self.dist = Discrete()
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
return self.dist(x)
class ParameterModule(nn.Module):
def __init__(self):
super(ParameterModule, self).__init__()
self.params = nn.ParameterList(
[nn.Parameter(torch.ones(10, 10)) for i in range(10)])
self.otherparam = nn.Parameter(torch.Tensor(5))
def forward(self, x):
# ParameterList can act as an iterable, or be indexed using ints
for i, p in enumerate(self.params):
x = self.params[i // 2].mm(x) + p.mm(x)
return x
class Sequence(nn.Module):
def __init__(self):
super(Sequence, self).__init__()
self.lstm1 = nn.LSTMCell(1, 51)
self.lstm2 = nn.LSTMCell(51, 51)
self.linear = nn.Linear(51, 1)
def forward(self, input, future=0):
outputs = []
h_t = dummy_torch_tensor((input.size(0), 51))
c_t = dummy_torch_tensor((input.size(0), 51))
h_t2 = dummy_torch_tensor((input.size(0), 51))
c_t2 = dummy_torch_tensor((input.size(0), 51))
for i, input_t in enumerate(input.chunk(input.size(1), dim=1)):
h_t, c_t = self.lstm1(input_t, (h_t, c_t))
h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
output = self.linear(h_t2)
outputs += [output]
for i in range(future): # if we should predict the future
h_t, c_t = self.lstm1(output, (h_t, c_t))
h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
output = self.linear(h_t2)
outputs += [output]
outputs = torch.stack(outputs, 1).squeeze(2)
return outputs
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def init_conv_weights(layer, weights_std=0.01, bias=0):
'''Initialize weights for subnet convolution'''
nn.init.normal_(layer.weight.data, std=weights_std)
nn.init.constant_(layer.bias.data, val=bias)
return layer
def conv3x3(in_channels, out_channels, **kwargs):
'''Return a 3x3 convolutional layer for SubNet'''
layer = nn.Conv2d(in_channels, out_channels, kernel_size=3, **kwargs)
layer = init_conv_weights(layer)
return layer
def test_all_logging(wandb_init_run):
net = ConvNet()
wandb.watch(net, log="all", log_freq=1)
for i in range(3):
output = net(dummy_torch_tensor((32, 1, 28, 28)))
grads = torch.ones(32, 10)
output.backward(grads)
wandb.log({"a": 2})
assert(len(wandb.run._backend.history[0]) == 20)
assert(
len(wandb.run._backend.history[0]['parameters/fc2.bias']['bins']) == 65)
assert(
len(wandb.run._backend.history[0]['gradients/fc2.bias']['bins']) == 65)
assert(len(wandb.run._backend.history) == 3)
def test_double_log(wandb_init_run):
net = ConvNet()
wandb.watch(net)
with pytest.raises(ValueError):
wandb.watch(net)
@pytest.mark.timeout(120)
def test_sequence_net(wandb_init_run):
net = Sequence()
graph = wandb.wandb_torch.TorchGraph.hook_torch(net)
output = net.forward(dummy_torch_tensor(
(97, 100)))
output.backward(torch.zeros((97, 100)))
graph = graph._to_graph_json()
assert len(graph["nodes"]) == 3
assert len(graph["nodes"][0]['parameters']) == 4
assert graph["nodes"][0]['class_name'] == "LSTMCell(1, 51)"
assert graph["nodes"][0]['name'] == "lstm1"
@pytest.mark.skipif(sys.platform == "darwin",
reason="TODO: [Errno 24] Too many open files?!?")
def test_multi_net(wandb_init_run):
net1 = ConvNet()
net2 = ConvNet()
graphs = wandb.watch((net1, net2))
output1 = net1.forward(dummy_torch_tensor((64, 1, 28, 28)))
output2 = net2.forward(dummy_torch_tensor((64, 1, 28, 28)))
grads = torch.ones(64, 10)
output1.backward(grads)
output2.backward(grads)
graph1 = graphs[0]._to_graph_json()
graph2 = graphs[1]._to_graph_json()
assert len(graph1["nodes"]) == 5
assert len(graph2["nodes"]) == 5
def test_nested_shape():
shape = wandb.wandb_torch.nested_shape([2, 4, 5])
assert shape == [[], [], []]
shape = wandb.wandb_torch.nested_shape([dummy_torch_tensor((2, 3)),
dummy_torch_tensor((4, 5))])
assert shape == [[2, 3], [4, 5]]
# create recursive lists of tensors (t3 includes itself)
t1 = dummy_torch_tensor((2, 3))
t2 = dummy_torch_tensor((4, 5))
t3 = [t1, t2]
t3.append(t3)
t3.append(t2)
shape = wandb.wandb_torch.nested_shape([t1, t2, t3])
assert shape == [[2, 3], [4, 5], [[2, 3], [4, 5], 0, [4, 5]]]