forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cpuset.c
2467 lines (2172 loc) · 70.7 KB
/
cpuset.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* kernel/cpuset.c
*
* Processor and Memory placement constraints for sets of tasks.
*
* Copyright (C) 2003 BULL SA.
* Copyright (C) 2004-2007 Silicon Graphics, Inc.
* Copyright (C) 2006 Google, Inc
*
* Portions derived from Patrick Mochel's sysfs code.
* sysfs is Copyright (c) 2001-3 Patrick Mochel
*
* 2003-10-10 Written by Simon Derr.
* 2003-10-22 Updates by Stephen Hemminger.
* 2004 May-July Rework by Paul Jackson.
* 2006 Rework by Paul Menage to use generic cgroups
* 2008 Rework of the scheduler domains and CPU hotplug handling
* by Max Krasnyansky
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*/
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
#include <linux/mempolicy.h>
#include <linux/mm.h>
#include <linux/memory.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/security.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>
#include <asm/uaccess.h>
#include <asm/atomic.h>
#include <linux/mutex.h>
#include <linux/workqueue.h>
#include <linux/cgroup.h>
/*
* Tracks how many cpusets are currently defined in system.
* When there is only one cpuset (the root cpuset) we can
* short circuit some hooks.
*/
int number_of_cpusets __read_mostly;
/* Forward declare cgroup structures */
struct cgroup_subsys cpuset_subsys;
struct cpuset;
/* See "Frequency meter" comments, below. */
struct fmeter {
int cnt; /* unprocessed events count */
int val; /* most recent output value */
time_t time; /* clock (secs) when val computed */
spinlock_t lock; /* guards read or write of above */
};
struct cpuset {
struct cgroup_subsys_state css;
unsigned long flags; /* "unsigned long" so bitops work */
cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
struct cpuset *parent; /* my parent */
/*
* Copy of global cpuset_mems_generation as of the most
* recent time this cpuset changed its mems_allowed.
*/
int mems_generation;
struct fmeter fmeter; /* memory_pressure filter */
/* partition number for rebuild_sched_domains() */
int pn;
/* for custom sched domain */
int relax_domain_level;
/* used for walking a cpuset heirarchy */
struct list_head stack_list;
};
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
struct cpuset, css);
}
/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
return container_of(task_subsys_state(task, cpuset_subsys_id),
struct cpuset, css);
}
struct cpuset_hotplug_scanner {
struct cgroup_scanner scan;
struct cgroup *to;
};
/* bits in struct cpuset flags field */
typedef enum {
CS_CPU_EXCLUSIVE,
CS_MEM_EXCLUSIVE,
CS_MEM_HARDWALL,
CS_MEMORY_MIGRATE,
CS_SCHED_LOAD_BALANCE,
CS_SPREAD_PAGE,
CS_SPREAD_SLAB,
} cpuset_flagbits_t;
/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
}
static inline int is_mem_exclusive(const struct cpuset *cs)
{
return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
}
static inline int is_mem_hardwall(const struct cpuset *cs)
{
return test_bit(CS_MEM_HARDWALL, &cs->flags);
}
static inline int is_sched_load_balance(const struct cpuset *cs)
{
return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}
static inline int is_memory_migrate(const struct cpuset *cs)
{
return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
}
static inline int is_spread_page(const struct cpuset *cs)
{
return test_bit(CS_SPREAD_PAGE, &cs->flags);
}
static inline int is_spread_slab(const struct cpuset *cs)
{
return test_bit(CS_SPREAD_SLAB, &cs->flags);
}
/*
* Increment this integer everytime any cpuset changes its
* mems_allowed value. Users of cpusets can track this generation
* number, and avoid having to lock and reload mems_allowed unless
* the cpuset they're using changes generation.
*
* A single, global generation is needed because cpuset_attach_task() could
* reattach a task to a different cpuset, which must not have its
* generation numbers aliased with those of that tasks previous cpuset.
*
* Generations are needed for mems_allowed because one task cannot
* modify another's memory placement. So we must enable every task,
* on every visit to __alloc_pages(), to efficiently check whether
* its current->cpuset->mems_allowed has changed, requiring an update
* of its current->mems_allowed.
*
* Since writes to cpuset_mems_generation are guarded by the cgroup lock
* there is no need to mark it atomic.
*/
static int cpuset_mems_generation;
static struct cpuset top_cpuset = {
.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
.cpus_allowed = CPU_MASK_ALL,
.mems_allowed = NODE_MASK_ALL,
};
/*
* There are two global mutexes guarding cpuset structures. The first
* is the main control groups cgroup_mutex, accessed via
* cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
* callback_mutex, below. They can nest. It is ok to first take
* cgroup_mutex, then nest callback_mutex. We also require taking
* task_lock() when dereferencing a task's cpuset pointer. See "The
* task_lock() exception", at the end of this comment.
*
* A task must hold both mutexes to modify cpusets. If a task
* holds cgroup_mutex, then it blocks others wanting that mutex,
* ensuring that it is the only task able to also acquire callback_mutex
* and be able to modify cpusets. It can perform various checks on
* the cpuset structure first, knowing nothing will change. It can
* also allocate memory while just holding cgroup_mutex. While it is
* performing these checks, various callback routines can briefly
* acquire callback_mutex to query cpusets. Once it is ready to make
* the changes, it takes callback_mutex, blocking everyone else.
*
* Calls to the kernel memory allocator can not be made while holding
* callback_mutex, as that would risk double tripping on callback_mutex
* from one of the callbacks into the cpuset code from within
* __alloc_pages().
*
* If a task is only holding callback_mutex, then it has read-only
* access to cpusets.
*
* The task_struct fields mems_allowed and mems_generation may only
* be accessed in the context of that task, so require no locks.
*
* The cpuset_common_file_read() handlers only hold callback_mutex across
* small pieces of code, such as when reading out possibly multi-word
* cpumasks and nodemasks.
*
* Accessing a task's cpuset should be done in accordance with the
* guidelines for accessing subsystem state in kernel/cgroup.c
*/
static DEFINE_MUTEX(callback_mutex);
/*
* This is ugly, but preserves the userspace API for existing cpuset
* users. If someone tries to mount the "cpuset" filesystem, we
* silently switch it to mount "cgroup" instead
*/
static int cpuset_get_sb(struct file_system_type *fs_type,
int flags, const char *unused_dev_name,
void *data, struct vfsmount *mnt)
{
struct file_system_type *cgroup_fs = get_fs_type("cgroup");
int ret = -ENODEV;
if (cgroup_fs) {
char mountopts[] =
"cpuset,noprefix,"
"release_agent=/sbin/cpuset_release_agent";
ret = cgroup_fs->get_sb(cgroup_fs, flags,
unused_dev_name, mountopts, mnt);
put_filesystem(cgroup_fs);
}
return ret;
}
static struct file_system_type cpuset_fs_type = {
.name = "cpuset",
.get_sb = cpuset_get_sb,
};
/*
* Return in *pmask the portion of a cpusets's cpus_allowed that
* are online. If none are online, walk up the cpuset hierarchy
* until we find one that does have some online cpus. If we get
* all the way to the top and still haven't found any online cpus,
* return cpu_online_map. Or if passed a NULL cs from an exit'ing
* task, return cpu_online_map.
*
* One way or another, we guarantee to return some non-empty subset
* of cpu_online_map.
*
* Call with callback_mutex held.
*/
static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
cs = cs->parent;
if (cs)
cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
else
*pmask = cpu_online_map;
BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}
/*
* Return in *pmask the portion of a cpusets's mems_allowed that
* are online, with memory. If none are online with memory, walk
* up the cpuset hierarchy until we find one that does have some
* online mems. If we get all the way to the top and still haven't
* found any online mems, return node_states[N_HIGH_MEMORY].
*
* One way or another, we guarantee to return some non-empty subset
* of node_states[N_HIGH_MEMORY].
*
* Call with callback_mutex held.
*/
static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
while (cs && !nodes_intersects(cs->mems_allowed,
node_states[N_HIGH_MEMORY]))
cs = cs->parent;
if (cs)
nodes_and(*pmask, cs->mems_allowed,
node_states[N_HIGH_MEMORY]);
else
*pmask = node_states[N_HIGH_MEMORY];
BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
}
/**
* cpuset_update_task_memory_state - update task memory placement
*
* If the current tasks cpusets mems_allowed changed behind our
* backs, update current->mems_allowed, mems_generation and task NUMA
* mempolicy to the new value.
*
* Task mempolicy is updated by rebinding it relative to the
* current->cpuset if a task has its memory placement changed.
* Do not call this routine if in_interrupt().
*
* Call without callback_mutex or task_lock() held. May be
* called with or without cgroup_mutex held. Thanks in part to
* 'the_top_cpuset_hack', the task's cpuset pointer will never
* be NULL. This routine also might acquire callback_mutex during
* call.
*
* Reading current->cpuset->mems_generation doesn't need task_lock
* to guard the current->cpuset derefence, because it is guarded
* from concurrent freeing of current->cpuset using RCU.
*
* The rcu_dereference() is technically probably not needed,
* as I don't actually mind if I see a new cpuset pointer but
* an old value of mems_generation. However this really only
* matters on alpha systems using cpusets heavily. If I dropped
* that rcu_dereference(), it would save them a memory barrier.
* For all other arch's, rcu_dereference is a no-op anyway, and for
* alpha systems not using cpusets, another planned optimization,
* avoiding the rcu critical section for tasks in the root cpuset
* which is statically allocated, so can't vanish, will make this
* irrelevant. Better to use RCU as intended, than to engage in
* some cute trick to save a memory barrier that is impossible to
* test, for alpha systems using cpusets heavily, which might not
* even exist.
*
* This routine is needed to update the per-task mems_allowed data,
* within the tasks context, when it is trying to allocate memory
* (in various mm/mempolicy.c routines) and notices that some other
* task has been modifying its cpuset.
*/
void cpuset_update_task_memory_state(void)
{
int my_cpusets_mem_gen;
struct task_struct *tsk = current;
struct cpuset *cs;
if (task_cs(tsk) == &top_cpuset) {
/* Don't need rcu for top_cpuset. It's never freed. */
my_cpusets_mem_gen = top_cpuset.mems_generation;
} else {
rcu_read_lock();
my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
rcu_read_unlock();
}
if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
mutex_lock(&callback_mutex);
task_lock(tsk);
cs = task_cs(tsk); /* Maybe changed when task not locked */
guarantee_online_mems(cs, &tsk->mems_allowed);
tsk->cpuset_mems_generation = cs->mems_generation;
if (is_spread_page(cs))
tsk->flags |= PF_SPREAD_PAGE;
else
tsk->flags &= ~PF_SPREAD_PAGE;
if (is_spread_slab(cs))
tsk->flags |= PF_SPREAD_SLAB;
else
tsk->flags &= ~PF_SPREAD_SLAB;
task_unlock(tsk);
mutex_unlock(&callback_mutex);
mpol_rebind_task(tsk, &tsk->mems_allowed);
}
}
/*
* is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
*
* One cpuset is a subset of another if all its allowed CPUs and
* Memory Nodes are a subset of the other, and its exclusive flags
* are only set if the other's are set. Call holding cgroup_mutex.
*/
static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
nodes_subset(p->mems_allowed, q->mems_allowed) &&
is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
is_mem_exclusive(p) <= is_mem_exclusive(q);
}
/*
* validate_change() - Used to validate that any proposed cpuset change
* follows the structural rules for cpusets.
*
* If we replaced the flag and mask values of the current cpuset
* (cur) with those values in the trial cpuset (trial), would
* our various subset and exclusive rules still be valid? Presumes
* cgroup_mutex held.
*
* 'cur' is the address of an actual, in-use cpuset. Operations
* such as list traversal that depend on the actual address of the
* cpuset in the list must use cur below, not trial.
*
* 'trial' is the address of bulk structure copy of cur, with
* perhaps one or more of the fields cpus_allowed, mems_allowed,
* or flags changed to new, trial values.
*
* Return 0 if valid, -errno if not.
*/
static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
struct cgroup *cont;
struct cpuset *c, *par;
/* Each of our child cpusets must be a subset of us */
list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
if (!is_cpuset_subset(cgroup_cs(cont), trial))
return -EBUSY;
}
/* Remaining checks don't apply to root cpuset */
if (cur == &top_cpuset)
return 0;
par = cur->parent;
/* We must be a subset of our parent cpuset */
if (!is_cpuset_subset(trial, par))
return -EACCES;
/*
* If either I or some sibling (!= me) is exclusive, we can't
* overlap
*/
list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
c = cgroup_cs(cont);
if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
c != cur &&
cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
return -EINVAL;
if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
c != cur &&
nodes_intersects(trial->mems_allowed, c->mems_allowed))
return -EINVAL;
}
/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
if (cgroup_task_count(cur->css.cgroup)) {
if (cpus_empty(trial->cpus_allowed) ||
nodes_empty(trial->mems_allowed)) {
return -ENOSPC;
}
}
return 0;
}
/*
* Helper routine for generate_sched_domains().
* Do cpusets a, b have overlapping cpus_allowed masks?
*/
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
}
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
if (dattr->relax_domain_level < c->relax_domain_level)
dattr->relax_domain_level = c->relax_domain_level;
return;
}
static void
update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
{
LIST_HEAD(q);
list_add(&c->stack_list, &q);
while (!list_empty(&q)) {
struct cpuset *cp;
struct cgroup *cont;
struct cpuset *child;
cp = list_first_entry(&q, struct cpuset, stack_list);
list_del(q.next);
if (cpus_empty(cp->cpus_allowed))
continue;
if (is_sched_load_balance(cp))
update_domain_attr(dattr, cp);
list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
child = cgroup_cs(cont);
list_add_tail(&child->stack_list, &q);
}
}
}
/*
* generate_sched_domains()
*
* This function builds a partial partition of the systems CPUs
* A 'partial partition' is a set of non-overlapping subsets whose
* union is a subset of that set.
* The output of this function needs to be passed to kernel/sched.c
* partition_sched_domains() routine, which will rebuild the scheduler's
* load balancing domains (sched domains) as specified by that partial
* partition.
*
* See "What is sched_load_balance" in Documentation/cpusets.txt
* for a background explanation of this.
*
* Does not return errors, on the theory that the callers of this
* routine would rather not worry about failures to rebuild sched
* domains when operating in the severe memory shortage situations
* that could cause allocation failures below.
*
* Must be called with cgroup_lock held.
*
* The three key local variables below are:
* q - a linked-list queue of cpuset pointers, used to implement a
* top-down scan of all cpusets. This scan loads a pointer
* to each cpuset marked is_sched_load_balance into the
* array 'csa'. For our purposes, rebuilding the schedulers
* sched domains, we can ignore !is_sched_load_balance cpusets.
* csa - (for CpuSet Array) Array of pointers to all the cpusets
* that need to be load balanced, for convenient iterative
* access by the subsequent code that finds the best partition,
* i.e the set of domains (subsets) of CPUs such that the
* cpus_allowed of every cpuset marked is_sched_load_balance
* is a subset of one of these domains, while there are as
* many such domains as possible, each as small as possible.
* doms - Conversion of 'csa' to an array of cpumasks, for passing to
* the kernel/sched.c routine partition_sched_domains() in a
* convenient format, that can be easily compared to the prior
* value to determine what partition elements (sched domains)
* were changed (added or removed.)
*
* Finding the best partition (set of domains):
* The triple nested loops below over i, j, k scan over the
* load balanced cpusets (using the array of cpuset pointers in
* csa[]) looking for pairs of cpusets that have overlapping
* cpus_allowed, but which don't have the same 'pn' partition
* number and gives them in the same partition number. It keeps
* looping on the 'restart' label until it can no longer find
* any such pairs.
*
* The union of the cpus_allowed masks from the set of
* all cpusets having the same 'pn' value then form the one
* element of the partition (one sched domain) to be passed to
* partition_sched_domains().
*/
static int generate_sched_domains(cpumask_t **domains,
struct sched_domain_attr **attributes)
{
LIST_HEAD(q); /* queue of cpusets to be scanned */
struct cpuset *cp; /* scans q */
struct cpuset **csa; /* array of all cpuset ptrs */
int csn; /* how many cpuset ptrs in csa so far */
int i, j, k; /* indices for partition finding loops */
cpumask_t *doms; /* resulting partition; i.e. sched domains */
struct sched_domain_attr *dattr; /* attributes for custom domains */
int ndoms = 0; /* number of sched domains in result */
int nslot; /* next empty doms[] cpumask_t slot */
doms = NULL;
dattr = NULL;
csa = NULL;
/* Special case for the 99% of systems with one, full, sched domain */
if (is_sched_load_balance(&top_cpuset)) {
doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
if (!doms)
goto done;
dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
if (dattr) {
*dattr = SD_ATTR_INIT;
update_domain_attr_tree(dattr, &top_cpuset);
}
*doms = top_cpuset.cpus_allowed;
ndoms = 1;
goto done;
}
csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
if (!csa)
goto done;
csn = 0;
list_add(&top_cpuset.stack_list, &q);
while (!list_empty(&q)) {
struct cgroup *cont;
struct cpuset *child; /* scans child cpusets of cp */
cp = list_first_entry(&q, struct cpuset, stack_list);
list_del(q.next);
if (cpus_empty(cp->cpus_allowed))
continue;
/*
* All child cpusets contain a subset of the parent's cpus, so
* just skip them, and then we call update_domain_attr_tree()
* to calc relax_domain_level of the corresponding sched
* domain.
*/
if (is_sched_load_balance(cp)) {
csa[csn++] = cp;
continue;
}
list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
child = cgroup_cs(cont);
list_add_tail(&child->stack_list, &q);
}
}
for (i = 0; i < csn; i++)
csa[i]->pn = i;
ndoms = csn;
restart:
/* Find the best partition (set of sched domains) */
for (i = 0; i < csn; i++) {
struct cpuset *a = csa[i];
int apn = a->pn;
for (j = 0; j < csn; j++) {
struct cpuset *b = csa[j];
int bpn = b->pn;
if (apn != bpn && cpusets_overlap(a, b)) {
for (k = 0; k < csn; k++) {
struct cpuset *c = csa[k];
if (c->pn == bpn)
c->pn = apn;
}
ndoms--; /* one less element */
goto restart;
}
}
}
/*
* Now we know how many domains to create.
* Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
*/
doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
if (!doms)
goto done;
/*
* The rest of the code, including the scheduler, can deal with
* dattr==NULL case. No need to abort if alloc fails.
*/
dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
for (nslot = 0, i = 0; i < csn; i++) {
struct cpuset *a = csa[i];
cpumask_t *dp;
int apn = a->pn;
if (apn < 0) {
/* Skip completed partitions */
continue;
}
dp = doms + nslot;
if (nslot == ndoms) {
static int warnings = 10;
if (warnings) {
printk(KERN_WARNING
"rebuild_sched_domains confused:"
" nslot %d, ndoms %d, csn %d, i %d,"
" apn %d\n",
nslot, ndoms, csn, i, apn);
warnings--;
}
continue;
}
cpus_clear(*dp);
if (dattr)
*(dattr + nslot) = SD_ATTR_INIT;
for (j = i; j < csn; j++) {
struct cpuset *b = csa[j];
if (apn == b->pn) {
cpus_or(*dp, *dp, b->cpus_allowed);
if (dattr)
update_domain_attr_tree(dattr + nslot, b);
/* Done with this partition */
b->pn = -1;
}
}
nslot++;
}
BUG_ON(nslot != ndoms);
done:
kfree(csa);
/*
* Fallback to the default domain if kmalloc() failed.
* See comments in partition_sched_domains().
*/
if (doms == NULL)
ndoms = 1;
*domains = doms;
*attributes = dattr;
return ndoms;
}
/*
* Rebuild scheduler domains.
*
* Call with neither cgroup_mutex held nor within get_online_cpus().
* Takes both cgroup_mutex and get_online_cpus().
*
* Cannot be directly called from cpuset code handling changes
* to the cpuset pseudo-filesystem, because it cannot be called
* from code that already holds cgroup_mutex.
*/
static void do_rebuild_sched_domains(struct work_struct *unused)
{
struct sched_domain_attr *attr;
cpumask_t *doms;
int ndoms;
get_online_cpus();
/* Generate domain masks and attrs */
cgroup_lock();
ndoms = generate_sched_domains(&doms, &attr);
cgroup_unlock();
/* Have scheduler rebuild the domains */
partition_sched_domains(ndoms, doms, attr);
put_online_cpus();
}
static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
/*
* Rebuild scheduler domains, asynchronously via workqueue.
*
* If the flag 'sched_load_balance' of any cpuset with non-empty
* 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
* which has that flag enabled, or if any cpuset with a non-empty
* 'cpus' is removed, then call this routine to rebuild the
* scheduler's dynamic sched domains.
*
* The rebuild_sched_domains() and partition_sched_domains()
* routines must nest cgroup_lock() inside get_online_cpus(),
* but such cpuset changes as these must nest that locking the
* other way, holding cgroup_lock() for much of the code.
*
* So in order to avoid an ABBA deadlock, the cpuset code handling
* these user changes delegates the actual sched domain rebuilding
* to a separate workqueue thread, which ends up processing the
* above do_rebuild_sched_domains() function.
*/
static void async_rebuild_sched_domains(void)
{
schedule_work(&rebuild_sched_domains_work);
}
/*
* Accomplishes the same scheduler domain rebuild as the above
* async_rebuild_sched_domains(), however it directly calls the
* rebuild routine synchronously rather than calling it via an
* asynchronous work thread.
*
* This can only be called from code that is not holding
* cgroup_mutex (not nested in a cgroup_lock() call.)
*/
void rebuild_sched_domains(void)
{
do_rebuild_sched_domains(NULL);
}
/**
* cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
* @tsk: task to test
* @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
*
* Call with cgroup_mutex held. May take callback_mutex during call.
* Called for each task in a cgroup by cgroup_scan_tasks().
* Return nonzero if this tasks's cpus_allowed mask should be changed (in other
* words, if its mask is not equal to its cpuset's mask).
*/
static int cpuset_test_cpumask(struct task_struct *tsk,
struct cgroup_scanner *scan)
{
return !cpus_equal(tsk->cpus_allowed,
(cgroup_cs(scan->cg))->cpus_allowed);
}
/**
* cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
* @tsk: task to test
* @scan: struct cgroup_scanner containing the cgroup of the task
*
* Called by cgroup_scan_tasks() for each task in a cgroup whose
* cpus_allowed mask needs to be changed.
*
* We don't need to re-check for the cgroup/cpuset membership, since we're
* holding cgroup_lock() at this point.
*/
static void cpuset_change_cpumask(struct task_struct *tsk,
struct cgroup_scanner *scan)
{
set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
}
/**
* update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
* @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
* @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
*
* Called with cgroup_mutex held
*
* The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
* calling callback functions for each.
*
* No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
* if @heap != NULL.
*/
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
{
struct cgroup_scanner scan;
scan.cg = cs->css.cgroup;
scan.test_task = cpuset_test_cpumask;
scan.process_task = cpuset_change_cpumask;
scan.heap = heap;
cgroup_scan_tasks(&scan);
}
/**
* update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
* @cs: the cpuset to consider
* @buf: buffer of cpu numbers written to this cpuset
*/
static int update_cpumask(struct cpuset *cs, const char *buf)
{
struct ptr_heap heap;
struct cpuset trialcs;
int retval;
int is_load_balanced;
/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
if (cs == &top_cpuset)
return -EACCES;
trialcs = *cs;
/*
* An empty cpus_allowed is ok only if the cpuset has no tasks.
* Since cpulist_parse() fails on an empty mask, we special case
* that parsing. The validate_change() call ensures that cpusets
* with tasks have cpus.
*/
if (!*buf) {
cpus_clear(trialcs.cpus_allowed);
} else {
retval = cpulist_parse(buf, trialcs.cpus_allowed);
if (retval < 0)
return retval;
if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
return -EINVAL;
}
retval = validate_change(cs, &trialcs);
if (retval < 0)
return retval;
/* Nothing to do if the cpus didn't change */
if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
return 0;
retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
if (retval)
return retval;
is_load_balanced = is_sched_load_balance(&trialcs);
mutex_lock(&callback_mutex);
cs->cpus_allowed = trialcs.cpus_allowed;
mutex_unlock(&callback_mutex);
/*
* Scan tasks in the cpuset, and update the cpumasks of any
* that need an update.
*/
update_tasks_cpumask(cs, &heap);
heap_free(&heap);
if (is_load_balanced)
async_rebuild_sched_domains();
return 0;
}
/*
* cpuset_migrate_mm
*
* Migrate memory region from one set of nodes to another.
*
* Temporarilly set tasks mems_allowed to target nodes of migration,
* so that the migration code can allocate pages on these nodes.
*
* Call holding cgroup_mutex, so current's cpuset won't change
* during this call, as manage_mutex holds off any cpuset_attach()
* calls. Therefore we don't need to take task_lock around the
* call to guarantee_online_mems(), as we know no one is changing
* our task's cpuset.
*
* Hold callback_mutex around the two modifications of our tasks
* mems_allowed to synchronize with cpuset_mems_allowed().
*
* While the mm_struct we are migrating is typically from some
* other task, the task_struct mems_allowed that we are hacking
* is for our current task, which must allocate new pages for that
* migrating memory region.
*
* We call cpuset_update_task_memory_state() before hacking
* our tasks mems_allowed, so that we are assured of being in
* sync with our tasks cpuset, and in particular, callbacks to
* cpuset_update_task_memory_state() from nested page allocations
* won't see any mismatch of our cpuset and task mems_generation
* values, so won't overwrite our hacked tasks mems_allowed
* nodemask.
*/
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
const nodemask_t *to)
{
struct task_struct *tsk = current;
cpuset_update_task_memory_state();
mutex_lock(&callback_mutex);
tsk->mems_allowed = *to;
mutex_unlock(&callback_mutex);
do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
mutex_lock(&callback_mutex);
guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
mutex_unlock(&callback_mutex);
}
static void *cpuset_being_rebound;
/**
* update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
* @cs: the cpuset in which each task's mems_allowed mask needs to be changed
* @oldmem: old mems_allowed of cpuset cs
*
* Called with cgroup_mutex held
* Return 0 if successful, -errno if not.
*/
static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
{
struct task_struct *p;
struct mm_struct **mmarray;
int i, n, ntasks;