forked from brightmart/text_classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_util_zhihu.py
557 lines (523 loc) · 26.8 KB
/
data_util_zhihu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# -*- coding: utf-8 -*-
import codecs
import numpy as np
#load data of zhihu
import word2vec
import os
import pickle
PAD_ID = 0
from tflearn.data_utils import pad_sequences
_GO="_GO"
_END="_END"
_PAD="_PAD"
def create_voabulary(simple=None,word2vec_model_path='../zhihu-word2vec-title-desc.bin-100',name_scope=''): #zhihu-word2vec-multilabel.bin-100
cache_path ='../cache_vocabulary_label_pik/'+ name_scope + "_word_voabulary.pik"
print("cache_path:",cache_path,"file_exists:",os.path.exists(cache_path))
if os.path.exists(cache_path):#如果缓存文件存在,则直接读取
with open(cache_path, 'r') as data_f:
vocabulary_word2index, vocabulary_index2word=pickle.load(data_f)
return vocabulary_word2index, vocabulary_index2word
else:
vocabulary_word2index={}
vocabulary_index2word={}
if simple is not None:
word2vec_model_path='../zhihu-word2vec.bin-100'
print("create vocabulary. word2vec_model_path:",word2vec_model_path)
model=word2vec.load(word2vec_model_path,kind='bin')
vocabulary_word2index['PAD_ID']=0
vocabulary_index2word[0]='PAD_ID'
special_index=0
if 'biLstmTextRelation' in name_scope:
vocabulary_word2index['EOS']=1 # a special token for biLstTextRelation model. which is used between two sentences.
vocabulary_index2word[1]='EOS'
special_index=1
for i,vocab in enumerate(model.vocab):
vocabulary_word2index[vocab]=i+1+special_index
vocabulary_index2word[i+1+special_index]=vocab
#save to file system if vocabulary of words is not exists.
if not os.path.exists(cache_path): #如果不存在写到缓存文件中
with open(cache_path, 'a') as data_f:
pickle.dump((vocabulary_word2index,vocabulary_index2word), data_f)
return vocabulary_word2index,vocabulary_index2word
# create vocabulary of lables. label is sorted. 1 is high frequency, 2 is low frequency.
def create_voabulary_label(voabulary_label='train-zhihu4-only-title-all.txt',name_scope='',use_seq2seq=False):#'train-zhihu.txt'
print("create_voabulary_label_sorted.started.traning_data_path:",voabulary_label)
cache_path ='../cache_vocabulary_label_pik/'+ name_scope + "_label_voabulary.pik"
if os.path.exists(cache_path):#如果缓存文件存在,则直接读取
with open(cache_path, 'r') as data_f:
vocabulary_word2index_label, vocabulary_index2word_label=pickle.load(data_f)
return vocabulary_word2index_label, vocabulary_index2word_label
else:
zhihu_f_train = codecs.open(voabulary_label, 'r', 'utf8')
lines=zhihu_f_train.readlines()
count=0
vocabulary_word2index_label={}
vocabulary_index2word_label={}
vocabulary_label_count_dict={} #{label:count}
for i,line in enumerate(lines):
if '__label__' in line: #'__label__-2051131023989903826
label=line[line.index('__label__')+len('__label__'):].strip().replace("\n","")
if vocabulary_label_count_dict.get(label,None) is not None:
vocabulary_label_count_dict[label]=vocabulary_label_count_dict[label]+1
else:
vocabulary_label_count_dict[label]=1
list_label=sort_by_value(vocabulary_label_count_dict)
print("length of list_label:",len(list_label));#print(";list_label:",list_label)
countt=0
##########################################################################################
if use_seq2seq:#if used for seq2seq model,insert two special label(token):_GO AND _END
i_list=[0,1,2];label_special_list=[_GO,_END,_PAD]
for i,label in zip(i_list,label_special_list):
vocabulary_word2index_label[label] = i
vocabulary_index2word_label[i] = label
#########################################################################################
for i,label in enumerate(list_label):
if i<10:
count_value=vocabulary_label_count_dict[label]
print("label:",label,"count_value:",count_value)
countt=countt+count_value
indexx = i + 3 if use_seq2seq else i
vocabulary_word2index_label[label]=indexx
vocabulary_index2word_label[indexx]=label
print("count top10:",countt)
#save to file system if vocabulary of words is not exists.
if not os.path.exists(cache_path): #如果不存在写到缓存文件中
with open(cache_path, 'a') as data_f:
pickle.dump((vocabulary_word2index_label,vocabulary_index2word_label), data_f)
print("create_voabulary_label_sorted.ended.len of vocabulary_label:",len(vocabulary_index2word_label))
return vocabulary_word2index_label,vocabulary_index2word_label
def sort_by_value(d):
items=d.items()
backitems=[[v[1],v[0]] for v in items]
backitems.sort(reverse=True)
return [ backitems[i][1] for i in range(0,len(backitems))]
def create_voabulary_labelO():
model = word2vec.load('zhihu-word2vec-multilabel.bin-100', kind='bin') #zhihu-word2vec.bin-100
count=0
vocabulary_word2index_label={}
vocabulary_index2word_label={}
label_unique={}
for i,vocab in enumerate(model.vocab):
if '__label__' in vocab: #'__label__-2051131023989903826
label=vocab[vocab.index('__label__')+len('__label__'):]
if label_unique.get(label,None) is None: #不曾出现过的话,保持到字典中
vocabulary_word2index_label[label]=count
vocabulary_index2word_label[count]=label #ADD
count=count+1
label_unique[label]=label
return vocabulary_word2index_label,vocabulary_index2word_label
def load_data_multilabel_new(vocabulary_word2index,vocabulary_word2index_label,valid_portion=0.05,max_training_data=1000000,
traning_data_path='../train-zhihu4-only-title-all.txt',multi_label_flag=True,use_seq2seq=False,seq2seq_label_length=6): # n_words=100000,
"""
input: a file path
:return: train, test, valid. where train=(trainX, trainY). where
trainX: is a list of list.each list representation a sentence.trainY: is a list of label. each label is a number
"""
# 1.load a zhihu data from file
# example:"w305 w6651 w3974 w1005 w54 w109 w110 w3974 w29 w25 w1513 w3645 w6 w111 __label__-400525901828896492"
print("load_data.started...")
print("load_data_multilabel_new.training_data_path:",traning_data_path)
zhihu_f = codecs.open(traning_data_path, 'r', 'utf8') #-zhihu4-only-title.txt
lines = zhihu_f.readlines()
# 2.transform X as indices
# 3.transform y as scalar
X = []
Y = []
Y_decoder_input=[] #ADD 2017-06-15
for i, line in enumerate(lines):
x, y = line.split('__label__') #x='w17314 w5521 w7729 w767 w10147 w111'
y=y.strip().replace('\n','')
x = x.strip()
if i<1:
print(i,"x0:",x) #get raw x
#x_=process_one_sentence_to_get_ui_bi_tri_gram(x)
x=x.split(" ")
x = [vocabulary_word2index.get(e,0) for e in x] #if can't find the word, set the index as '0'.(equal to PAD_ID = 0)
if i<2:
print(i,"x1:",x) #word to index
if use_seq2seq: # 1)prepare label for seq2seq format(ADD _GO,_END,_PAD for seq2seq)
ys = y.replace('\n', '').split(" ") # ys is a list
_PAD_INDEX=vocabulary_word2index_label[_PAD]
ys_mulithot_list=[_PAD_INDEX]*seq2seq_label_length #[3,2,11,14,1]
ys_decoder_input=[_PAD_INDEX]*seq2seq_label_length
# below is label.
for j,y in enumerate(ys):
if j<seq2seq_label_length-1:
ys_mulithot_list[j]=vocabulary_word2index_label[y]
if len(ys)>seq2seq_label_length-1:
ys_mulithot_list[seq2seq_label_length-1]=vocabulary_word2index_label[_END]#ADD END TOKEN
else:
ys_mulithot_list[len(ys)] = vocabulary_word2index_label[_END]
# below is input for decoder.
ys_decoder_input[0]=vocabulary_word2index_label[_GO]
for j,y in enumerate(ys):
if j < seq2seq_label_length - 1:
ys_decoder_input[j+1]=vocabulary_word2index_label[y]
if i<10:
print(i,"ys:==========>0", ys)
print(i,"ys_mulithot_list:==============>1", ys_mulithot_list)
print(i,"ys_decoder_input:==============>2", ys_decoder_input)
else:
if multi_label_flag: # 2)prepare multi-label format for classification
ys = y.replace('\n', '').split(" ") # ys is a list
ys_index=[]
for y in ys:
y_index = vocabulary_word2index_label[y]
ys_index.append(y_index)
ys_mulithot_list=transform_multilabel_as_multihot(ys_index)
else: #3)prepare single label format for classification
ys_mulithot_list=vocabulary_word2index_label[y]
if i<=3:
print("ys_index:")
#print(ys_index)
print(i,"y:",y," ;ys_mulithot_list:",ys_mulithot_list) #," ;ys_decoder_input:",ys_decoder_input)
X.append(x)
Y.append(ys_mulithot_list)
if use_seq2seq:
Y_decoder_input.append(ys_decoder_input) #decoder input
#if i>50000:
# break
# 4.split to train,test and valid data
number_examples = len(X)
print("number_examples:",number_examples) #
train = (X[0:int((1 - valid_portion) * number_examples)], Y[0:int((1 - valid_portion) * number_examples)])
test = (X[int((1 - valid_portion) * number_examples) + 1:], Y[int((1 - valid_portion) * number_examples) + 1:])
if use_seq2seq:
train=train+(Y_decoder_input[0:int((1 - valid_portion) * number_examples)],)
test=test+(Y_decoder_input[int((1 - valid_portion) * number_examples) + 1:],)
# 5.return
print("load_data.ended...")
return train, test, test
def load_data_multilabel_new_twoCNN(vocabulary_word2index,vocabulary_word2index_label,valid_portion=0.05,max_training_data=1000000,
traning_data_path='train-zhihu4-only-title-all.txt',multi_label_flag=True): # n_words=100000,
"""
input: a file path
:return: train, test, valid. where train=(trainX, trainY). where
trainX: is a list of list.each list representation a sentence.trainY: is a list of label. each label is a number
"""
# 1.load a zhihu data from file
# example:"w305 w6651 w3974 w1005 w54 w109 w110 w3974 w29 w25 w1513 w3645 w6 w111 __label__-400525901828896492"
print("load_data.twoCNN.started...")
print("load_data_multilabel_new_twoCNN.training_data_path:",traning_data_path)
zhihu_f = codecs.open(traning_data_path, 'r', 'utf8') #-zhihu4-only-title.txt
lines = zhihu_f.readlines()
# 2.transform X as indices
# 3.transform y as scalar
X = []
X2=[]
Y = []
count_error=0
for i, line in enumerate(lines):
x, y = line.split('__label__') #x='w17314 w5521 w7729 w767 w10147 w111'
y=y.strip().replace('\n','')
x = x.strip()
#print("x:===============>",x)
try:
x,x2=x.split("\t")
except Exception:
print("x.split.error.",x,"count_error:",count_error)
count_error+=1
continue
if i<1:
print(i,"x0:",x) #get raw x
#x_=process_one_sentence_to_get_ui_bi_tri_gram(x)
x=x.split(" ")
x = [vocabulary_word2index.get(e,0) for e in x] #if can't find the word, set the index as '0'.(equal to PAD_ID = 0)
x2=x2.split(" ")
x2 =[vocabulary_word2index.get(e, 0) for e in x2]
if i<1:
print(i,"x1:",x,"x2:",x2) #word to index
if multi_label_flag:
ys = y.replace('\n', '').split(" ") #ys is a list
ys_index=[]
for y in ys:
y_index = vocabulary_word2index_label[y]
ys_index.append(y_index)
ys_mulithot_list=transform_multilabel_as_multihot(ys_index)
else:
ys_mulithot_list=int(y) #vocabulary_word2index_label[y]
if i<1:
print(i,"y:",y,"ys_mulithot_list:",ys_mulithot_list)
X.append(x)
X2.append(x2)
Y.append(ys_mulithot_list)
# 4.split to train,test and valid data
number_examples = len(X)
print("number_examples:",number_examples) #
train = (X[0:int((1 - valid_portion) * number_examples)],X2[0:int((1 - valid_portion) * number_examples)],Y[0:int((1 - valid_portion) * number_examples)])
test = (X[int((1 - valid_portion) * number_examples) + 1:], X2[int((1 - valid_portion) * number_examples) + 1:],Y[int((1 - valid_portion) * number_examples) + 1:])
# 5.return
print("load_data.ended...")
return train, test, test
def load_data(vocabulary_word2index,vocabulary_word2index_label,valid_portion=0.05,max_training_data=1000000,training_data_path='train-zhihu4-only-title-all.txt'): # n_words=100000,
"""
input: a file path
:return: train, test, valid. where train=(trainX, trainY). where
trainX: is a list of list.each list representation a sentence.trainY: is a list of label. each label is a number
"""
# 1.load a zhihu data from file
# example:"w305 w6651 w3974 w1005 w54 w109 w110 w3974 w29 w25 w1513 w3645 w6 w111 __label__-400525901828896492"
print("load_data.started...")
zhihu_f = codecs.open(training_data_path, 'r', 'utf8') #-zhihu4-only-title.txt
lines = zhihu_f.readlines()
# 2.transform X as indices
# 3.transform y as scalar
X = []
Y = []
for i, line in enumerate(lines):
x, y = line.split('__label__') #x='w17314 w5521 w7729 w767 w10147 w111'
y=y.replace('\n','')
x = x.replace("\t",' EOS ').strip()
if i<5:
print("x0:",x) #get raw x
#x_=process_one_sentence_to_get_ui_bi_tri_gram(x)
#if i<5:
# print("x1:",x_) #
x=x.split(" ")
x = [vocabulary_word2index.get(e,0) for e in x] #if can't find the word, set the index as '0'.(equal to PAD_ID = 0)
if i<5:
print("x1:",x) #word to index
y = vocabulary_word2index_label[y] #np.abs(hash(y))
X.append(x)
Y.append(y)
# 4.split to train,test and valid data
number_examples = len(X)
print("number_examples:",number_examples) #
train = (X[0:int((1 - valid_portion) * number_examples)], Y[0:int((1 - valid_portion) * number_examples)])
test = (X[int((1 - valid_portion) * number_examples) + 1:], Y[int((1 - valid_portion) * number_examples) + 1:])
# 5.return
print("load_data.ended...")
return train, test, test
# 将一句话转化为(uigram,bigram,trigram)后的字符串
def process_one_sentence_to_get_ui_bi_tri_gram(sentence,n_gram=3):
"""
:param sentence: string. example:'w17314 w5521 w7729 w767 w10147 w111'
:param n_gram:
:return:string. example:'w17314 w17314w5521 w17314w5521w7729 w5521 w5521w7729 w5521w7729w767 w7729 w7729w767 w7729w767w10147 w767 w767w10147 w767w10147w111 w10147 w10147w111 w111'
"""
result=[]
word_list=sentence.split(" ") #[sentence[i] for i in range(len(sentence))]
unigram='';bigram='';trigram='';fourgram=''
length_sentence=len(word_list)
for i,word in enumerate(word_list):
unigram=word #ui-gram
word_i=unigram
if n_gram>=2 and i+2<=length_sentence: #bi-gram
bigram="".join(word_list[i:i+2])
word_i=word_i+' '+bigram
if n_gram>=3 and i+3<=length_sentence: #tri-gram
trigram="".join(word_list[i:i+3])
word_i = word_i + ' ' + trigram
if n_gram>=4 and i+4<=length_sentence: #four-gram
fourgram="".join(word_list[i:i+4])
word_i = word_i + ' ' + fourgram
if n_gram>=5 and i+5<=length_sentence: #five-gram
fivegram="".join(word_list[i:i+5])
word_i = word_i + ' ' + fivegram
result.append(word_i)
result=" ".join(result)
return result
# 加载数据,标签包含多个label:load data with multi-labels
def load_data_with_multilabels(vocabulary_word2index,vocabulary_word2index_label,traning_path,valid_portion=0.05,max_training_data=1000000): # n_words=100000,
"""
input: a file path
:return: train, test, valid. where train=(trainX, trainY). where
trainX: is a list of list.each list representation a sentence.trainY: is a list of label. each label is a number
"""
# 1.load a zhihu data from file
# example: 'w140 w13867 w10344 w2673 w9514 w269 w460 w6 w35053 w844 w10147 w111 __label__-2379261820462209275 -5535923551616745326 6038661761506862294'
print("load_data_with_multilabels.ended...")
zhihu_f = codecs.open(traning_path,'r','utf8') #('/home/xul/xul/9_ZhihuCup/'+data_type+'-zhihu5-only-title-multilabel.txt', 'r', 'utf8') #home/xul/xul/9_ZhihuCup/'
lines = zhihu_f.readlines()
# 2.transform X as indices
# 3.transform y as scalar
X = []
Y = []
Y_label1999=[]
for i, line in enumerate(lines):
#if i>max_training_data:
# break
x, ys = line.split('__label__') #x='w17314 w5521 w7729 w767 w10147 w111'
ys=ys.replace('\n','').split(" ")
x = x.strip()
if i < 5:
print("x0:", x) # u'w4260 w4260w86860 w4260w86860w30907 w86860 w86860w30907 w86860w30907w11 w30907 w30907w11 w30907w11w31 w11 w11w31 w11w31w72 w31 w31w72 w31w72w166 w72 w72w166 w72w166w346 w166 w166w346 w166w346w2182 w346 w346w2182 w346w2182w224 w2182 w2182w224 w2182w224w2148 w224 w224w2148 w224w2148w6 w2148 w2148w6 w2148w6w2566 w6 w6w2566 w6w2566w25 w2566 w2566w25 w2566w25w1110 w25 w25w1110 w25w1110w111 w1110 w1110w111 w111'
#x_=process_one_sentence_to_get_ui_bi_tri_gram(x)
#if i < 5:
# print("x1:", x_)
x=x.split(" ")
x = [vocabulary_word2index.get(e,0) for e in x] #if can't find the word, set the index as '0'.(equal to PAD_ID = 0)
if i<5:
print("x2:", x)
#print("ys:",ys) #['501174938575526146', '-4317515119936650885']
ys_list=[]
for y in ys:
y_ = vocabulary_word2index_label[y]
ys_list.append(y_)
X.append(x)
#TODO ys_list_array=transform_multilabel_as_multihot(ys_list) #it is 2-d array. [[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]...]
ys_list_=proces_label_to_algin(ys_list)
Y.append(ys_list_)
#TODO Y_label1999.append(ys_list_array)
if i==0:
print(X,Y)
print(Y_label1999)
# 4.split to train,test and valid data
number_examples = len(X)
train = (X[0:int((1 - valid_portion) * number_examples)], Y[0:int((1 - valid_portion) * number_examples)]) #TODO Y_label1999[0:int((1 - valid_portion) * number_examples)]
test = (X[int((1 - valid_portion) * number_examples) + 1:], Y[int((1 - valid_portion) * number_examples) + 1:]) #TODO ,Y_label1999[int((1 - valid_portion) * number_examples) + 1:]
print("load_data_with_multilabels.ended...")
return train, test
#将LABEL转化为MULTI-HOT
def transform_multilabel_as_multihot(label_list,label_size=1999): #1999label_list=[0,1,4,9,5]
"""
:param label_list: e.g.[0,1,4]
:param label_size: e.g.199
:return:e.g.[1,1,0,1,0,0,........]
"""
result=np.zeros(label_size)
#set those location as 1, all else place as 0.
result[label_list] = 1
return result
#将LABEL转化为MULTI-HOT
def transform_multilabel_as_multihotO(label_list,label_size=1999): #1999label_list=[0,1,4,9,5]
batch_size=len(label_list)
result=np.zeros((batch_size,label_size))
#set those location as 1, all else place as 0.
result[(range(batch_size),label_list)]=1
return result
def load_final_test_data(file_path):
final_test_file_predict_object = codecs.open(file_path, 'r', 'utf8')
lines=final_test_file_predict_object.readlines()
question_lists_result=[]
for i,line in enumerate(lines):
question_id,question_string=line.split("\t")
question_string=question_string.strip().replace("\n","")
question_lists_result.append((question_id,question_string))
print("length of total question lists:",len(question_lists_result))
return question_lists_result
def load_data_predict(vocabulary_word2index,vocabulary_word2index_label,questionid_question_lists,uni_to_tri_gram=False): # n_words=100000,
final_list=[]
for i, tuplee in enumerate(questionid_question_lists):
queston_id,question_string_list=tuplee
if uni_to_tri_gram:
x_=process_one_sentence_to_get_ui_bi_tri_gram(question_string_list)
x=x_.split(" ")
else:
x=question_string_list.split(" ")
x = [vocabulary_word2index.get(e, 0) for e in x] #if can't find the word, set the index as '0'.(equal to PAD_ID = 0)
if i<=2:
print("question_id:",queston_id);print("question_string_list:",question_string_list);print("x_indexed:",x)
final_list.append((queston_id,x))
number_examples = len(final_list)
print("number_examples:",number_examples) #
return final_list
def proces_label_to_algin(ys_list,require_size=5):
"""
:param ys_list: a list
:return: a list
"""
ys_list_result=[0 for x in range(require_size)]
if len(ys_list)>=require_size: #超长
ys_list_result=ys_list[0:require_size]
else:#太短
if len(ys_list)==1:
ys_list_result =[ys_list[0] for x in range(require_size)]
elif len(ys_list)==2:
ys_list_result = [ys_list[0],ys_list[0],ys_list[0],ys_list[1],ys_list[1]]
elif len(ys_list) == 3:
ys_list_result = [ys_list[0], ys_list[0], ys_list[1], ys_list[1], ys_list[2]]
elif len(ys_list) == 4:
ys_list_result = [ys_list[0], ys_list[0], ys_list[1], ys_list[2], ys_list[3]]
return ys_list_result
def write_uigram_to_trigram():
pass
#1.read file.
#2.uigram--->trigram
#3.write each line to file system.
def test_pad():
trainX='w18476 w4454 w1674 w6 w25 w474 w1333 w1467 w863 w6 w4430 w11 w813 w4463 w863 w6 w4430 w111'
trainX=trainX.split(" ")
trainX = pad_sequences([[trainX]], maxlen=100, value=0.)
print("trainX:",trainX)
topic_info_file_path='topic_info.txt'
def read_topic_info():
f = codecs.open(topic_info_file_path, 'r', 'utf8')
lines=f.readlines()
dict_questionid_title={}
for i,line in enumerate(lines):
topic_id,partent_ids,title_character,title_words,desc_character,decs_words=line.split("\t").strip()
# print(i,"------------------------------------------------------")
# print("topic_id:",topic_id)
# print("partent_ids:",partent_ids)
# print("title_character:",title_character)
# print("title_words:",title_words)
# print("desc_character:",desc_character)
# print("decs_words:",decs_words)
dict_questionid_title[topic_id]=title_words+" "+decs_words
print("len(dict_questionid_title):",len(dict_questionid_title))
return dict_questionid_title
def stat_training_data_length():
training_data='train-zhihu4-only-title-all.txt'
f = codecs.open(training_data, 'r', 'utf8')
lines=f.readlines()
length_dict={0:0,5:0,10:0,15:0,20:0,25:0,30:0,35:0,40:0,100:0,150:0,200:0,1500:0}
length_list=[0,5,10,15,20,25,30,35,40,100,150,200,1500]
for i,line in enumerate(lines):
line_list=line.split('__label__')[0].strip().split(" ")
length=len(line_list)
#print(i,"length:",length)
for l in length_list:
if length<l:
length=l
#print("length.assigned:",length)
break
#print("length.before dict assign:", length)
length_dict[length]=length_dict[length]+1
print("length_dict:",length_dict)
if __name__ == '__main__':
if __name__ == '__main__':
if __name__ == '__main__':
#1.
#vocabulary_word2index, vocabulary_index2word=create_voabulary()
#vocabulary_word2index_label, vocabulary_index2word_label=create_voabulary_label()
#load_data_with_multilabels(vocabulary_word2index,vocabulary_word2index_label,data_type='test')
#2.
#sentence=u'我想开通创业板'
#sentence='w18476 w4454 w1674 w6 w25 w474 w1333 w1467 w863 w6 w4430 w11 w813 w4463 w863 w6 w4430 w111'
#result=process_one_sentence_to_get_ui_bi_tri_gram(sentence,n_gram=3)
#print(len(result),"result:",result)
#3. transform to multilabel
#label_list=[0,1,4,9,5]
#result=transform_multilabel_as_multihot(label_list,label_size=15)
#print("result:",result)
#4.load data for predict-----------------------------------------------------------------
#file_path='test-zhihu-forpredict-v4only-title.txt'
#questionid_question_lists=load_final_test_data(file_path)
#vocabulary_word2index, vocabulary_index2word=create_voabulary()
#vocabulary_word2index_label,_=create_voabulary_label()
#final_list=load_data_predict(vocabulary_word2index, vocabulary_word2index_label, questionid_question_lists)
#5.process label require lengh
#ys_list=[99999]
#ys_list_result=proces_label_to_algin(ys_list,require_size=5)
#print(ys_list,"ys_list_result1.:",ys_list_result)
#ys_list=[99999,23423432,67566765]
#ys_list_result=proces_label_to_algin(ys_list,require_size=5)
#print(ys_list,"ys_list_result2.:",ys_list_result)
#ys_list=[99999,23423432,67566765,23333333]
#ys_list_result=proces_label_to_algin(ys_list,require_size=5)
#print(ys_list,"ys_list_result2.:",ys_list_result)
#ys_list = [99999, 23423432, 67566765,44543543,546546546,323423434]
#ys_list_result = proces_label_to_algin(ys_list, require_size=5)
#print(ys_list, "ys_list_result3.:", ys_list_result)
#6.create vocabulary label. sorted.
#create_voabulary_label()
#d={'a':3,'b':2,'c':11}
#d_=sort_by_value(d)
#print("d_",d_)
#7.
#test_pad()
#8.read topic info
#read_topic_info()
#9。
stat_training_data_length()