forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaddleclas.py
483 lines (436 loc) · 19.2 KB
/
paddleclas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, ''))
import argparse
import shutil
import textwrap
from difflib import SequenceMatcher
from prettytable import PrettyTable
import cv2
import numpy as np
import tarfile
import requests
from tqdm import tqdm
from tools.infer.utils import get_image_list, preprocess, save_prelabel_results
from tools.infer.predict import Predictor
__all__ = ['PaddleClas']
BASE_DIR = os.path.expanduser("~/.paddleclas/")
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, 'inference_model')
BASE_IMAGES_DIR = os.path.join(BASE_DIR, 'images')
model_series = {
"AlexNet": ["AlexNet"],
"DarkNet": ["DarkNet53"],
"DeiT": [
'DeiT_base_distilled_patch16_224', 'DeiT_base_distilled_patch16_384',
'DeiT_base_patch16_224', 'DeiT_base_patch16_384',
'DeiT_small_distilled_patch16_224', 'DeiT_small_patch16_224',
'DeiT_tiny_distilled_patch16_224', 'DeiT_tiny_patch16_224'
],
"DenseNet": [
"DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
"DenseNet264"
],
"DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
"EfficientNet": [
"EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
"EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
"EfficientNetB6", "EfficientNetB7"
],
"GhostNet":
["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
"HRNet": [
"HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
"HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
"HRNet_W48_C_ssld"
],
"Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
"MobileNetV1": [
"MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
"MobileNetV1", "MobileNetV1_ssld"
],
"MobileNetV2": [
"MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
"MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
"MobileNetV2_ssld"
],
"MobileNetV3": [
"MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
"MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
"MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
"MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
"MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
"MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
],
"RegNet": ["RegNetX_4GF"],
"Res2Net": [
"Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
"Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
"Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
"Res2Net200_vd_26w_4s_ssld"
],
"ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
"ResNet": [
"ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
"ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
"ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
"ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
"ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
],
"ResNeXt": [
"ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
"ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
"ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
"ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
"Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
"ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
"ResNeXt152_vd_64x4d"
],
"SENet": [
"SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
"SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
"SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
],
"ShuffleNetV2": [
"ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
"ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
"ShuffleNetV2_x2_0"
],
"SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
"SwinTransformer": [
"SwinTransformer_large_patch4_window7_224_22kto1k",
"SwinTransformer_large_patch4_window12_384_22kto1k",
"SwinTransformer_base_patch4_window7_224_22kto1k",
"SwinTransformer_base_patch4_window12_384_22kto1k",
"SwinTransformer_base_patch4_window12_384",
"SwinTransformer_base_patch4_window7_224",
"SwinTransformer_small_patch4_window7_224",
"SwinTransformer_tiny_patch4_window7_224"
],
"VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
"VisionTransformer": [
"ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
"ViT_large_patch16_224", "ViT_large_patch16_384",
"ViT_large_patch32_384", "ViT_small_patch16_224"
],
"Xception": [
"Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
"Xception71"
]
}
class ModelNameError(Exception):
""" ModelNameError
"""
def __init__(self, message=''):
super().__init__(message)
def print_info():
table = PrettyTable(['Series', 'Name'])
try:
sz = os.get_terminal_size()
width = sz.columns - 30 if sz.columns > 50 else 10
except OSError:
width = 100
for series in model_series:
names = textwrap.fill(" ".join(model_series[series]), width=width)
table.add_row([series, names])
print('Inference models that PaddleClas provides are listed as follows:')
print(table)
def get_model_names():
model_names = []
for series in model_series:
model_names += model_series[series]
return model_names
def similar_architectures(name='', names=[], thresh=0.1, topk=10):
"""
inferred similar architectures
"""
scores = []
for idx, n in enumerate(names):
if n.startswith('__'):
continue
score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
if score > thresh:
scores.append((idx, score))
scores.sort(key=lambda x: x[1], reverse=True)
similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
return similar_names
def download_with_progressbar(url, save_path):
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(save_path, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes:
raise Exception(
"Something went wrong while downloading model/image from {}".
format(url))
def maybe_download(model_storage_directory, url):
# using custom model
tar_file_name_list = [
'inference.pdiparams', 'inference.pdiparams.info', 'inference.pdmodel'
]
if not os.path.exists(
os.path.join(model_storage_directory, 'inference.pdiparams')
) or not os.path.exists(
os.path.join(model_storage_directory, 'inference.pdmodel')):
tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
print('download {} to {}'.format(url, tmp_path))
os.makedirs(model_storage_directory, exist_ok=True)
download_with_progressbar(url, tmp_path)
with tarfile.open(tmp_path, 'r') as tarObj:
for member in tarObj.getmembers():
filename = None
for tar_file_name in tar_file_name_list:
if tar_file_name in member.name:
filename = tar_file_name
if filename is None:
continue
file = tarObj.extractfile(member)
with open(
os.path.join(model_storage_directory, filename),
'wb') as f:
f.write(file.read())
os.remove(tmp_path)
def load_label_name_dict(path):
if not os.path.exists(path):
print(
"Warning: If want to use your own label_dict, please input legal path!\nOtherwise label_names will be empty!"
)
return None
else:
result = {}
for line in open(path, 'r'):
partition = line.split('\n')[0].partition(' ')
try:
result[int(partition[0])] = str(partition[-1])
except:
result = {}
break
return result
def parse_args(mMain=True, add_help=True):
def str2bool(v):
return v.lower() in ("true", "t", "1")
if mMain == True:
# general params
parser = argparse.ArgumentParser(add_help=add_help)
parser.add_argument("--model_name", type=str)
parser.add_argument("-i", "--image_file", type=str)
parser.add_argument("--use_gpu", type=str2bool, default=False)
# params for preprocess
parser.add_argument("--resize_short", type=int, default=256)
parser.add_argument("--resize", type=int, default=224)
parser.add_argument("--normalize", type=str2bool, default=True)
parser.add_argument("-b", "--batch_size", type=int, default=1)
# params for predict
parser.add_argument(
"--model_file", type=str, default='') ## inference.pdmodel
parser.add_argument(
"--params_file", type=str, default='') ## inference.pdiparams
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_fp16", type=str2bool, default=False)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000)
parser.add_argument("--enable_profile", type=str2bool, default=False)
parser.add_argument("--top_k", type=int, default=1)
parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
parser.add_argument("--cpu_num_threads", type=int, default=10)
# parameters for pre-label the images
parser.add_argument("--label_name_path", type=str, default='')
parser.add_argument(
"--pre_label_image",
type=str2bool,
default=False,
help="Whether to pre-label the images using the loaded weights")
parser.add_argument("--pre_label_out_idr", type=str, default=None)
return parser.parse_args()
else:
return argparse.Namespace(
model_name='',
image_file='',
use_gpu=False,
use_fp16=False,
use_tensorrt=False,
is_preprocessed=False,
resize_short=256,
resize=224,
normalize=True,
batch_size=1,
model_file='',
params_file='',
ir_optim=True,
gpu_mem=8000,
enable_profile=False,
top_k=1,
enable_mkldnn=False,
cpu_num_threads=10,
label_name_path='',
pre_label_image=False,
pre_label_out_idr=None)
class PaddleClas(object):
print_info()
def __init__(self, **kwargs):
model_names = get_model_names()
process_params = parse_args(mMain=False, add_help=False)
process_params.__dict__.update(**kwargs)
if not os.path.exists(process_params.model_file):
if process_params.model_name is None:
raise ModelNameError(
'Please input model name that you want to use!')
similar_names = similar_architectures(process_params.model_name,
model_names)
model_list = ', '.join(similar_names)
if process_params.model_name not in similar_names:
err = "{} is not exist! Maybe you want: [{}]" \
"".format(process_params.model_name, model_list)
raise ModelNameError(err)
if process_params.model_name in model_names:
url = 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar'.format(
process_params.model_name)
if not os.path.exists(
os.path.join(BASE_INFERENCE_MODEL_DIR,
process_params.model_name)):
os.makedirs(
os.path.join(BASE_INFERENCE_MODEL_DIR,
process_params.model_name))
download_path = os.path.join(BASE_INFERENCE_MODEL_DIR,
process_params.model_name)
maybe_download(model_storage_directory=download_path, url=url)
process_params.model_file = os.path.join(download_path,
'inference.pdmodel')
process_params.params_file = os.path.join(
download_path, 'inference.pdiparams')
process_params.label_name_path = os.path.join(
__dir__, 'ppcls/utils/imagenet1k_label_list.txt')
else:
raise Exception(
'The model inputed is {}, not provided by PaddleClas. If you want to use your own model, please input model_file as model path!'.
format(process_params.model_name))
else:
print('Using user-specified model and params!')
print("process params are as follows: \n{}".format(process_params))
self.label_name_dict = load_label_name_dict(
process_params.label_name_path)
self.args = process_params
self.predictor = Predictor(process_params)
def postprocess(self, output):
output = output.flatten()
classes = np.argpartition(output, -self.args.top_k)[-self.args.top_k:]
class_ids = classes[np.argsort(-output[classes])]
scores = output[class_ids]
label_names = [self.label_name_dict[c]
for c in class_ids] if self.label_name_dict else []
return {
"class_ids": class_ids,
"scores": scores,
"label_names": label_names
}
def predict(self, input_data):
"""
predict label of img with paddleclas
Args:
input_data(string, NumPy.ndarray): image to be classified, support:
string: local path of image file, internet URL, directory containing series of images;
NumPy.ndarray: preprocessed image data that has 3 channels and accords with [C, H, W], or raw image data that has 3 channels and accords with [H, W, C]
Returns:
dict: {image_name: "", class_id: [], scores: [], label_names: []},if label name path == None,label_names will be empty.
"""
if isinstance(input_data, np.ndarray):
if not self.args.is_preprocessed:
input_data = input_data[:, :, ::-1]
input_data = preprocess(input_data, self.args)
input_data = np.expand_dims(input_data, axis=0)
batch_outputs = self.predictor.predict(input_data)
result = {"filename": "image"}
result.update(self.postprocess(batch_outputs[0]))
return result
elif isinstance(input_data, str):
input_path = input_data
# download internet image
if input_path.startswith('http'):
if not os.path.exists(BASE_IMAGES_DIR):
os.makedirs(BASE_IMAGES_DIR)
file_path = os.path.join(BASE_IMAGES_DIR, 'tmp.jpg')
download_with_progressbar(input_path, file_path)
print("Current using image from Internet:{}, renamed as: {}".
format(input_path, file_path))
input_path = file_path
image_list = get_image_list(input_path)
total_result = []
batch_input_list = []
img_path_list = []
cnt = 0
for idx, img_path in enumerate(image_list):
img = cv2.imread(img_path)
if img is None:
print(
"Warning: Image file failed to read and has been skipped. The path: {}".
format(img_path))
continue
else:
img = img[:, :, ::-1]
data = preprocess(img, self.args)
batch_input_list.append(data)
img_path_list.append(img_path)
cnt += 1
if cnt % self.args.batch_size == 0 or (idx + 1
) == len(image_list):
batch_outputs = self.predictor.predict(
np.array(batch_input_list))
for number, output in enumerate(batch_outputs):
result = {"filename": img_path_list[number]}
result.update(self.postprocess(output))
result_str = "top-{} result: {}".format(
self.args.top_k, result)
print(result_str)
total_result.append(result)
if self.args.pre_label_image:
save_prelabel_results(result["class_ids"][0],
img_path_list[number],
self.args.pre_label_out_idr)
batch_input_list = []
img_path_list = []
return total_result
else:
print(
"Error: Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
)
return []
def main():
# for cmd
args = parse_args(mMain=True)
clas_engine = PaddleClas(**(args.__dict__))
print('{}{}{}'.format('*' * 10, args.image_file, '*' * 10))
total_result = clas_engine.predict(args.image_file)
print("Predict complete!")
if __name__ == '__main__':
main()