To build a conda tensorflow package with GPU support
-
Build the required Docker containers:
Dockerfiles can be found at: https://github.com/jjhelmus/docker-images
CUDA 9.0: pkg_build_cos6_cuda90 CUDA 9.2: pkg_build_cos6_cuda92 CUDA 10.0: pkg_build_cos6_cuda100
-
Start the docker container using:
sudo nvidia-docker run -v `pwd`:/io -it pkg_build_cos6_cuda100
-
Create a symlink for libcuda.so.1
ln -s /usr/local/cuda/lib64/stubs/libcuda.so /usr/local/cuda/lib64/stubs/libcuda.so.1
-
Update conda and conda-build, and navigate to the recipe root folder.
Modify conda_build_config.yaml in this directory to specifiy the CUDA, CuDNN, compiler and python versions.
To start a build use:
conda build .
To time the build and log the build output use:
time conda build . 2>&1 | tee ../tf_build_gpu.log