forked from learnables/learn2learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaml_sine.py
90 lines (67 loc) · 2.56 KB
/
maml_sine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python3
"""
Trains a 3 layer MLP with MAML on Sine Wave Regression Dataset.
We use the Sine Wave dataloader from the torchmeta package.
Torchmeta: https://github.com/tristandeleu/pytorch-meta
"""
import random
import numpy as np
import torch
import learn2learn as l2l
from torch import nn, optim
from torchmeta.toy import Sinusoid
from torchmeta.utils.data import BatchMetaDataLoader
class SineModel(nn.Module):
def __init__(self, dim):
super().__init__()
self.hidden1 = nn.Linear(1, dim)
self.hidden2 = nn.Linear(dim, dim)
self.hidden3 = nn.Linear(dim, 1)
def forward(self, x):
x = nn.functional.relu(self.hidden1(x))
x = nn.functional.relu(self.hidden2(x))
x = self.hidden3(x)
return x
def main(
shots=10,
tasks_per_batch=16,
num_tasks=160000,
adapt_lr=0.01,
meta_lr=0.001,
adapt_steps=5,
hidden_dim=32,
):
# load the dataset
tasksets = Sinusoid(num_samples_per_task=2*shots, num_tasks=num_tasks)
dataloader = BatchMetaDataLoader(tasksets, batch_size=tasks_per_batch)
# create the model
model = SineModel(dim=hidden_dim)
maml = l2l.algorithms.MAML(model, lr=adapt_lr, first_order=False, allow_unused=True)
opt = optim.Adam(maml.parameters(), meta_lr)
lossfn = nn.MSELoss(reduction='mean')
# for each iteration
for iter, batch in enumerate(dataloader): # num_tasks/batch_size
meta_train_loss = 0.0
# for each task in the batch
effective_batch_size = batch[0].shape[0]
for i in range(effective_batch_size):
learner = maml.clone()
# divide the data into support and query sets
train_inputs, train_targets = batch[0][i].float(), batch[1][i].float()
x_support, y_support = train_inputs[::2], train_targets[::2]
x_query, y_query = train_inputs[1::2], train_targets[1::2]
for _ in range(adapt_steps): # adaptation_steps
support_preds = learner(x_support)
support_loss=lossfn(support_preds, y_support)
learner.adapt(support_loss)
query_preds = learner(x_query)
query_loss = lossfn(query_preds, y_query)
meta_train_loss += query_loss
meta_train_loss = meta_train_loss / effective_batch_size
if iter % 200 == 0:
print('Iteration:', iter, 'Meta Train Loss', meta_train_loss.item())
opt.zero_grad()
meta_train_loss.backward()
opt.step()
if __name__ == '__main__':
main()