forked from yule-BUAA/DyGLib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_node_classification.py
368 lines (309 loc) · 23.6 KB
/
train_node_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import logging
import time
import sys
import os
from tqdm import tqdm
import numpy as np
import warnings
import shutil
import json
import torch
import torch.nn as nn
from models.TGAT import TGAT
from models.MemoryModel import MemoryModel, compute_src_dst_node_time_shifts
from models.CAWN import CAWN
from models.TCL import TCL
from models.GraphMixer import GraphMixer
from models.DyGFormer import DyGFormer
from models.modules import MergeLayer, MLPClassifier
from utils.utils import set_random_seed, convert_to_gpu, get_parameter_sizes, create_optimizer
from utils.utils import get_neighbor_sampler
from evaluate_models_utils import evaluate_model_node_classification
from utils.metrics import get_node_classification_metrics
from utils.DataLoader import get_idx_data_loader, get_node_classification_data
from utils.EarlyStopping import EarlyStopping
from utils.load_configs import get_node_classification_args
if __name__ == "__main__":
warnings.filterwarnings('ignore')
# get arguments
args = get_node_classification_args()
# get data for training, validation and testing
node_raw_features, edge_raw_features, full_data, train_data, val_data, test_data = \
get_node_classification_data(dataset_name=args.dataset_name, val_ratio=args.val_ratio, test_ratio=args.test_ratio)
# initialize validation and test neighbor sampler to retrieve temporal graph
full_neighbor_sampler = get_neighbor_sampler(data=full_data, sample_neighbor_strategy=args.sample_neighbor_strategy,
time_scaling_factor=args.time_scaling_factor, seed=1)
# get data loaders
train_idx_data_loader = get_idx_data_loader(indices_list=list(range(len(train_data.src_node_ids))), batch_size=args.batch_size, shuffle=False)
val_idx_data_loader = get_idx_data_loader(indices_list=list(range(len(val_data.src_node_ids))), batch_size=args.batch_size, shuffle=False)
test_idx_data_loader = get_idx_data_loader(indices_list=list(range(len(test_data.src_node_ids))), batch_size=args.batch_size, shuffle=False)
val_metric_all_runs, test_metric_all_runs = [], []
for run in range(args.num_runs):
set_random_seed(seed=run)
args.seed = run
args.load_model_name = f'{args.model_name}_seed{args.seed}'
args.save_model_name = f'node_classification_{args.model_name}_seed{args.seed}'
# set up logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
os.makedirs(f"./logs/{args.model_name}/{args.dataset_name}/{args.save_model_name}/", exist_ok=True)
# create file handler that logs debug and higher level messages
fh = logging.FileHandler(f"./logs/{args.model_name}/{args.dataset_name}/{args.save_model_name}/{str(time.time())}.log")
fh.setLevel(logging.DEBUG)
# create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.WARNING)
# create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
# add the handlers to logger
logger.addHandler(fh)
logger.addHandler(ch)
run_start_time = time.time()
logger.info(f"********** Run {run + 1} starts. **********")
logger.info(f'configuration is {args}')
# create model
if args.model_name == 'TGAT':
dynamic_backbone = TGAT(node_raw_features=node_raw_features, edge_raw_features=edge_raw_features, neighbor_sampler=full_neighbor_sampler,
time_feat_dim=args.time_feat_dim, num_layers=args.num_layers, num_heads=args.num_heads, dropout=args.dropout, device=args.device)
elif args.model_name in ['JODIE', 'DyRep', 'TGN']:
# four floats that represent the mean and standard deviation of source and destination node time shifts in the training data, which is used for JODIE
src_node_mean_time_shift, src_node_std_time_shift, dst_node_mean_time_shift_dst, dst_node_std_time_shift = \
compute_src_dst_node_time_shifts(train_data.src_node_ids, train_data.dst_node_ids, train_data.node_interact_times)
dynamic_backbone = MemoryModel(node_raw_features=node_raw_features, edge_raw_features=edge_raw_features, neighbor_sampler=full_neighbor_sampler,
time_feat_dim=args.time_feat_dim, model_name=args.model_name, num_layers=args.num_layers, num_heads=args.num_heads,
dropout=args.dropout, src_node_mean_time_shift=src_node_mean_time_shift, src_node_std_time_shift=src_node_std_time_shift,
dst_node_mean_time_shift_dst=dst_node_mean_time_shift_dst, dst_node_std_time_shift=dst_node_std_time_shift, device=args.device)
elif args.model_name == 'CAWN':
dynamic_backbone = CAWN(node_raw_features=node_raw_features, edge_raw_features=edge_raw_features, neighbor_sampler=full_neighbor_sampler,
time_feat_dim=args.time_feat_dim, position_feat_dim=args.position_feat_dim, walk_length=args.walk_length,
num_walk_heads=args.num_walk_heads, dropout=args.dropout, device=args.device)
elif args.model_name == 'TCL':
dynamic_backbone = TCL(node_raw_features=node_raw_features, edge_raw_features=edge_raw_features, neighbor_sampler=full_neighbor_sampler,
time_feat_dim=args.time_feat_dim, num_layers=args.num_layers, num_heads=args.num_heads,
num_depths=args.num_neighbors + 1, dropout=args.dropout, device=args.device)
elif args.model_name == 'GraphMixer':
dynamic_backbone = GraphMixer(node_raw_features=node_raw_features, edge_raw_features=edge_raw_features, neighbor_sampler=full_neighbor_sampler,
time_feat_dim=args.time_feat_dim, num_tokens=args.num_neighbors, num_layers=args.num_layers, dropout=args.dropout, device=args.device)
elif args.model_name == 'DyGFormer':
dynamic_backbone = DyGFormer(node_raw_features=node_raw_features, edge_raw_features=edge_raw_features, neighbor_sampler=full_neighbor_sampler,
time_feat_dim=args.time_feat_dim, channel_embedding_dim=args.channel_embedding_dim, patch_size=args.patch_size,
num_layers=args.num_layers, num_heads=args.num_heads, dropout=args.dropout,
max_input_sequence_length=args.max_input_sequence_length, device=args.device)
else:
raise ValueError(f"Wrong value for model_name {args.model_name}!")
link_predictor = MergeLayer(input_dim1=node_raw_features.shape[1], input_dim2=node_raw_features.shape[1],
hidden_dim=node_raw_features.shape[1], output_dim=1)
model = nn.Sequential(dynamic_backbone, link_predictor)
# load the saved model in the link prediction task
load_model_folder = f"./saved_models/{args.model_name}/{args.dataset_name}/{args.load_model_name}"
early_stopping = EarlyStopping(patience=0, save_model_folder=load_model_folder,
save_model_name=args.load_model_name, logger=logger, model_name=args.model_name)
early_stopping.load_checkpoint(model, map_location='cpu')
# create the model for the node classification task
node_classifier = MLPClassifier(input_dim=node_raw_features.shape[1], dropout=args.dropout)
model = nn.Sequential(model[0], node_classifier)
logger.info(f'model -> {model}')
logger.info(f'model name: {args.model_name}, #parameters: {get_parameter_sizes(model) * 4} B, '
f'{get_parameter_sizes(model) * 4 / 1024} KB, {get_parameter_sizes(model) * 4 / 1024 / 1024} MB.')
# follow previous work, we freeze the dynamic_backbone and only optimize the node_classifier
optimizer = create_optimizer(model=model[1], optimizer_name=args.optimizer, learning_rate=args.learning_rate, weight_decay=args.weight_decay)
model = convert_to_gpu(model, device=args.device)
# put the node raw messages of memory-based models on device
if args.model_name in ['JODIE', 'DyRep', 'TGN']:
for node_id, node_raw_messages in model[0].memory_bank.node_raw_messages.items():
new_node_raw_messages = []
for node_raw_message in node_raw_messages:
new_node_raw_messages.append((node_raw_message[0].to(args.device), node_raw_message[1]))
model[0].memory_bank.node_raw_messages[node_id] = new_node_raw_messages
save_model_folder = f"./saved_models/{args.model_name}/{args.dataset_name}/{args.save_model_name}/"
shutil.rmtree(save_model_folder, ignore_errors=True)
os.makedirs(save_model_folder, exist_ok=True)
early_stopping = EarlyStopping(patience=args.patience, save_model_folder=save_model_folder,
save_model_name=args.save_model_name, logger=logger, model_name=args.model_name)
loss_func = nn.BCELoss()
# set the dynamic_backbone in evaluation mode
model[0].eval()
for epoch in range(args.num_epochs):
model[1].train()
if args.model_name in ['DyRep', 'TGAT', 'TGN', 'CAWN', 'TCL', 'GraphMixer', 'DyGFormer']:
# training process, set the neighbor sampler
model[0].set_neighbor_sampler(full_neighbor_sampler)
if args.model_name in ['JODIE', 'DyRep', 'TGN']:
# reinitialize memory of memory-based models at the start of each epoch
model[0].memory_bank.__init_memory_bank__()
# store train losses, trues and predicts
train_total_loss, train_y_trues, train_y_predicts = 0.0, [], []
train_idx_data_loader_tqdm = tqdm(train_idx_data_loader, ncols=120)
for batch_idx, train_data_indices in enumerate(train_idx_data_loader_tqdm):
train_data_indices = train_data_indices.numpy()
batch_src_node_ids, batch_dst_node_ids, batch_node_interact_times, batch_edge_ids, batch_labels = \
train_data.src_node_ids[train_data_indices], train_data.dst_node_ids[train_data_indices], train_data.node_interact_times[train_data_indices], \
train_data.edge_ids[train_data_indices], train_data.labels[train_data_indices]
with torch.no_grad():
if args.model_name in ['TGAT', 'CAWN', 'TCL']:
# get temporal embedding of source and destination nodes
# two Tensors, with shape (batch_size, node_feat_dim)
batch_src_node_embeddings, batch_dst_node_embeddings = \
model[0].compute_src_dst_node_temporal_embeddings(src_node_ids=batch_src_node_ids,
dst_node_ids=batch_dst_node_ids,
node_interact_times=batch_node_interact_times,
num_neighbors=args.num_neighbors)
elif args.model_name in ['JODIE', 'DyRep', 'TGN']:
# get temporal embedding of source and destination nodes
# two Tensors, with shape (batch_size, node_feat_dim)
batch_src_node_embeddings, batch_dst_node_embeddings = \
model[0].compute_src_dst_node_temporal_embeddings(src_node_ids=batch_src_node_ids,
dst_node_ids=batch_dst_node_ids,
node_interact_times=batch_node_interact_times,
edge_ids=batch_edge_ids,
edges_are_positive=True,
num_neighbors=args.num_neighbors)
elif args.model_name in ['GraphMixer']:
# get temporal embedding of source and destination nodes
# two Tensors, with shape (batch_size, node_feat_dim)
batch_src_node_embeddings, batch_dst_node_embeddings = \
model[0].compute_src_dst_node_temporal_embeddings(src_node_ids=batch_src_node_ids,
dst_node_ids=batch_dst_node_ids,
node_interact_times=batch_node_interact_times,
num_neighbors=args.num_neighbors,
time_gap=args.time_gap)
elif args.model_name in ['DyGFormer']:
# get temporal embedding of source and destination nodes
# two Tensors, with shape (batch_size, node_feat_dim)
batch_src_node_embeddings, batch_dst_node_embeddings = \
model[0].compute_src_dst_node_temporal_embeddings(src_node_ids=batch_src_node_ids,
dst_node_ids=batch_dst_node_ids,
node_interact_times=batch_node_interact_times)
else:
raise ValueError(f"Wrong value for model_name {args.model_name}!")
# get predicted probabilities, shape (batch_size, )
predicts = model[1](x=batch_src_node_embeddings).squeeze(dim=-1).sigmoid()
labels = torch.from_numpy(batch_labels).float().to(predicts.device)
loss = loss_func(input=predicts, target=labels)
train_total_loss += loss.item()
train_y_trues.append(labels)
train_y_predicts.append(predicts)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_idx_data_loader_tqdm.set_description(f'Epoch: {epoch + 1}, train for the {batch_idx + 1}-th batch, train loss: {loss.item()}')
train_total_loss /= (batch_idx + 1)
train_y_trues = torch.cat(train_y_trues, dim=0)
train_y_predicts = torch.cat(train_y_predicts, dim=0)
train_metrics = get_node_classification_metrics(predicts=train_y_predicts, labels=train_y_trues)
val_total_loss, val_metrics = evaluate_model_node_classification(model_name=args.model_name,
model=model,
neighbor_sampler=full_neighbor_sampler,
evaluate_idx_data_loader=val_idx_data_loader,
evaluate_data=val_data,
loss_func=loss_func,
num_neighbors=args.num_neighbors,
time_gap=args.time_gap)
logger.info(f'Epoch: {epoch + 1}, learning rate: {optimizer.param_groups[0]["lr"]}, train loss: {train_total_loss:.4f}')
for metric_name in train_metrics.keys():
logger.info(f'train {metric_name}, {train_metrics[metric_name]:.4f}')
logger.info(f'validate loss: {val_total_loss:.4f}')
for metric_name in val_metrics.keys():
logger.info(f'validate {metric_name}, {val_metrics[metric_name]:.4f}')
# perform testing once after test_interval_epochs
if (epoch + 1) % args.test_interval_epochs == 0:
if args.model_name in ['JODIE', 'DyRep', 'TGN']:
# backup memory bank after validating so it can be used for testing nodes (since test edges are strictly later in time than validation edges)
val_backup_memory_bank = model[0].memory_bank.backup_memory_bank()
test_total_loss, test_metrics = evaluate_model_node_classification(model_name=args.model_name,
model=model,
neighbor_sampler=full_neighbor_sampler,
evaluate_idx_data_loader=test_idx_data_loader,
evaluate_data=test_data,
loss_func=loss_func,
num_neighbors=args.num_neighbors,
time_gap=args.time_gap)
if args.model_name in ['JODIE', 'DyRep', 'TGN']:
# reload validation memory bank for saving models
# note that since model treats memory as parameters, we need to reload the memory to val_backup_memory_bank for saving models
model[0].memory_bank.reload_memory_bank(val_backup_memory_bank)
logger.info(f'test loss: {test_total_loss:.4f}')
for metric_name in test_metrics.keys():
logger.info(f'test {metric_name}, {test_metrics[metric_name]:.4f}')
# select the best model based on all the validate metrics
val_metric_indicator = []
for metric_name in val_metrics.keys():
val_metric_indicator.append((metric_name, val_metrics[metric_name], True))
early_stop = early_stopping.step(val_metric_indicator, model)
if early_stop:
break
# load the best model
early_stopping.load_checkpoint(model)
# evaluate the best model
logger.info(f'get final performance on dataset {args.dataset_name}...')
# the saved best model of memory-based models cannot perform validation since the stored memory has been updated by validation data
if args.model_name not in ['JODIE', 'DyRep', 'TGN']:
val_total_loss, val_metrics = evaluate_model_node_classification(model_name=args.model_name,
model=model,
neighbor_sampler=full_neighbor_sampler,
evaluate_idx_data_loader=val_idx_data_loader,
evaluate_data=val_data,
loss_func=loss_func,
num_neighbors=args.num_neighbors,
time_gap=args.time_gap)
test_total_loss, test_metrics = evaluate_model_node_classification(model_name=args.model_name,
model=model,
neighbor_sampler=full_neighbor_sampler,
evaluate_idx_data_loader=test_idx_data_loader,
evaluate_data=test_data,
loss_func=loss_func,
num_neighbors=args.num_neighbors,
time_gap=args.time_gap)
# store the evaluation metrics at the current run
val_metric_dict, test_metric_dict = {}, {}
if args.model_name not in ['JODIE', 'DyRep', 'TGN']:
logger.info(f'validate loss: {val_total_loss:.4f}')
for metric_name in val_metrics.keys():
val_metric = val_metrics[metric_name]
logger.info(f'validate {metric_name}, {val_metric:.4f}')
val_metric_dict[metric_name] = val_metric
logger.info(f'test loss: {test_total_loss:.4f}')
for metric_name in test_metrics.keys():
test_metric = test_metrics[metric_name]
logger.info(f'test {metric_name}, {test_metric:.4f}')
test_metric_dict[metric_name] = test_metric
single_run_time = time.time() - run_start_time
logger.info(f'Run {run + 1} cost {single_run_time:.2f} seconds.')
if args.model_name not in ['JODIE', 'DyRep', 'TGN']:
val_metric_all_runs.append(val_metric_dict)
test_metric_all_runs.append(test_metric_dict)
# avoid the overlap of logs
if run < args.num_runs - 1:
logger.removeHandler(fh)
logger.removeHandler(ch)
# save model result
if args.model_name not in ['JODIE', 'DyRep', 'TGN']:
result_json = {
"validate metrics": {metric_name: f'{val_metric_dict[metric_name]:.4f}' for metric_name in val_metric_dict},
"test metrics": {metric_name: f'{test_metric_dict[metric_name]:.4f}' for metric_name in test_metric_dict}
}
else:
result_json = {
"test metrics": {metric_name: f'{test_metric_dict[metric_name]:.4f}' for metric_name in test_metric_dict}
}
result_json = json.dumps(result_json, indent=4)
save_result_folder = f"./saved_results/{args.model_name}/{args.dataset_name}"
os.makedirs(save_result_folder, exist_ok=True)
save_result_path = os.path.join(save_result_folder, f"{args.save_model_name}.json")
with open(save_result_path, 'w') as file:
file.write(result_json)
# store the average metrics at the log of the last run
logger.info(f'metrics over {args.num_runs} runs:')
if args.model_name not in ['JODIE', 'DyRep', 'TGN']:
for metric_name in val_metric_all_runs[0].keys():
logger.info(f'validate {metric_name}, {[val_metric_single_run[metric_name] for val_metric_single_run in val_metric_all_runs]}')
logger.info(f'average validate {metric_name}, {np.mean([val_metric_single_run[metric_name] for val_metric_single_run in val_metric_all_runs]):.4f} '
f'± {np.std([val_metric_single_run[metric_name] for val_metric_single_run in val_metric_all_runs], ddof=1):.4f}')
for metric_name in test_metric_all_runs[0].keys():
logger.info(f'test {metric_name}, {[test_metric_single_run[metric_name] for test_metric_single_run in test_metric_all_runs]}')
logger.info(f'average test {metric_name}, {np.mean([test_metric_single_run[metric_name] for test_metric_single_run in test_metric_all_runs]):.4f} '
f'± {np.std([test_metric_single_run[metric_name] for test_metric_single_run in test_metric_all_runs], ddof=1):.4f}')
sys.exit()