forked from pytorch/pytorch.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch.html
1982 lines (1746 loc) · 223 KB
/
torch.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta name="robots" content="noindex">
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>torch — PyTorch 1.7.1 documentation</title>
<link rel="canonical" href="https://pytorch.org/docs/stable/torch.html"/>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="_static/css/jit.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="_static/katex-math.css" type="text/css" />
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="torch.is_tensor" href="generated/torch.is_tensor.html" />
<link rel="prev" title="C++" href="cpp_index.html" />
<script src="_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active">
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-orange-arrow">
Docs
</a>
<div class="resources-dropdown-menu">
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/docs/1.7.1/index.html">
<span class="dropdown-title">PyTorch</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/audio/0.7.0/index.html">
<span class="dropdown-title">torchaudio</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/text/0.8.1/index.html">
<span class="dropdown-title">torchtext</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/vision/0.8/">
<span class="dropdown-title">torchvision</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/elastic/">
<span class="dropdown-title">TorchElastic</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/serve/">
<span class="dropdown-title">TorchServe</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/xla">
<span class="dropdown-title">PyTorch on XLA Devices</span>
<p></p>
</a>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-arrow">
Resources
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/features">
<span class="dropdown-title">About</span>
<p>Learn about PyTorch’s features and capabilities</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/#community-module">
<span class="dropdown-title">Community</span>
<p>Join the PyTorch developer community to contribute, learn, and get your questions answered.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/resources">
<span class="dropdown-title">Developer Resources</span>
<p>Find resources and get questions answered</p>
</a>
<a class="nav-dropdown-item" href="https://discuss.pytorch.org/" target="_blank">
<span class="dropdown-title">Forums</span>
<p>A place to discuss PyTorch code, issues, install, research</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/hub">
<span class="dropdown-title">Models (Beta)</span>
<p>Discover, publish, and reuse pre-trained models</p>
</a>
</div>
</div>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">Github</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
<a href='http://pytorch.org/docs/versions.html'>1.7.1 ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption"><span class="caption-text">Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="notes/amp_examples.html">Automatic Mixed Precision examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/autograd.html">Autograd mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/broadcasting.html">Broadcasting semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/cpu_threading_torchscript_inference.html">CPU threading and TorchScript inference</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/cuda.html">CUDA semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/ddp.html">Distributed Data Parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/extending.html">Extending PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/large_scale_deployments.html">Features for large-scale deployments</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/multiprocessing.html">Multiprocessing best practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/randomness.html">Reproducibility</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/serialization.html">Serialization semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/windows.html">Windows FAQ</a></li>
</ul>
<p class="caption"><span class="caption-text">Language Bindings</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="cpp_index.html">C++</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/javadoc/">Javadoc</a></li>
</ul>
<p class="caption"><span class="caption-text">Python API</span></p>
<ul class="current">
<li class="toctree-l1 current"><a class="current reference internal" href="#">torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.html">torch.nn</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.functional.html">torch.nn.functional</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensor_attributes.html">Tensor Attributes</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensor_view.html">Tensor Views</a></li>
<li class="toctree-l1"><a class="reference internal" href="autograd.html">torch.autograd</a></li>
<li class="toctree-l1"><a class="reference internal" href="cuda.html">torch.cuda</a></li>
<li class="toctree-l1"><a class="reference internal" href="amp.html">torch.cuda.amp</a></li>
<li class="toctree-l1"><a class="reference internal" href="backends.html">torch.backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.html">torch.distributed</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributions.html">torch.distributions</a></li>
<li class="toctree-l1"><a class="reference internal" href="fft.html">torch.fft</a></li>
<li class="toctree-l1"><a class="reference internal" href="futures.html">torch.futures</a></li>
<li class="toctree-l1"><a class="reference internal" href="hub.html">torch.hub</a></li>
<li class="toctree-l1"><a class="reference internal" href="jit.html">torch.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="linalg.html">torch.linalg</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.init.html">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="onnx.html">torch.onnx</a></li>
<li class="toctree-l1"><a class="reference internal" href="optim.html">torch.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="complex_numbers.html">Complex Numbers</a></li>
<li class="toctree-l1"><a class="reference internal" href="quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="rpc.html">Distributed RPC Framework</a></li>
<li class="toctree-l1"><a class="reference internal" href="random.html">torch.random</a></li>
<li class="toctree-l1"><a class="reference internal" href="sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="bottleneck.html">torch.utils.bottleneck</a></li>
<li class="toctree-l1"><a class="reference internal" href="checkpoint.html">torch.utils.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="cpp_extension.html">torch.utils.cpp_extension</a></li>
<li class="toctree-l1"><a class="reference internal" href="data.html">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="dlpack.html">torch.utils.dlpack</a></li>
<li class="toctree-l1"><a class="reference internal" href="mobile_optimizer.html">torch.utils.mobile_optimizer</a></li>
<li class="toctree-l1"><a class="reference internal" href="model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensorboard.html">torch.utils.tensorboard</a></li>
<li class="toctree-l1"><a class="reference internal" href="type_info.html">Type Info</a></li>
<li class="toctree-l1"><a class="reference internal" href="named_tensor.html">Named Tensors</a></li>
<li class="toctree-l1"><a class="reference internal" href="name_inference.html">Named Tensors operator coverage</a></li>
<li class="toctree-l1"><a class="reference internal" href="__config__.html">torch.__config__</a></li>
</ul>
<p class="caption"><span class="caption-text">Libraries</span></p>
<ul>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/audio">torchaudio</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/text">torchtext</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/vision">torchvision</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/elastic/">TorchElastic</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/serve">TorchServe</a></li>
<li class="toctree-l1"><a class="reference external" href="http://pytorch.org/xla/">PyTorch on XLA Devices</a></li>
</ul>
<p class="caption"><span class="caption-text">Community</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="community/contribution_guide.html">PyTorch Contribution Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="community/governance.html">PyTorch Governance</a></li>
<li class="toctree-l1"><a class="reference internal" href="community/persons_of_interest.html">PyTorch Governance | Persons of Interest</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="index.html">
Docs
</a> >
</li>
<li>torch</li>
<li class="pytorch-breadcrumbs-aside">
<a href="_sources/torch.rst.txt" rel="nofollow"><img src="_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<div class="section" id="torch">
<h1>torch<a class="headerlink" href="#torch" title="Permalink to this headline">¶</a></h1>
<p>The torch package contains data structures for multi-dimensional
tensors and mathematical operations over these are defined.
Additionally, it provides many utilities for efficient serializing of
Tensors and arbitrary types, and other useful utilities.</p>
<p>It has a CUDA counterpart, that enables you to run your tensor computations
on an NVIDIA GPU with compute capability >= 3.0</p>
<div class="section" id="tensors">
<h2>Tensors<a class="headerlink" href="#tensors" title="Permalink to this headline">¶</a></h2>
<table class="longtable docutils colwidths-auto align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.is_tensor"/><a class="reference internal" href="generated/torch.is_tensor.html#torch.is_tensor" title="torch.is_tensor"><code class="xref py py-obj docutils literal notranslate"><span class="pre">is_tensor</span></code></a></p></td>
<td><p>Returns True if <cite>obj</cite> is a PyTorch tensor.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.is_storage"/><a class="reference internal" href="generated/torch.is_storage.html#torch.is_storage" title="torch.is_storage"><code class="xref py py-obj docutils literal notranslate"><span class="pre">is_storage</span></code></a></p></td>
<td><p>Returns True if <cite>obj</cite> is a PyTorch storage object.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.is_complex"/><a class="reference internal" href="generated/torch.is_complex.html#torch.is_complex" title="torch.is_complex"><code class="xref py py-obj docutils literal notranslate"><span class="pre">is_complex</span></code></a></p></td>
<td><p>Returns True if the data type of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> is a complex data type i.e., one of <code class="docutils literal notranslate"><span class="pre">torch.complex64</span></code>, and <code class="docutils literal notranslate"><span class="pre">torch.complex128</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.is_floating_point"/><a class="reference internal" href="generated/torch.is_floating_point.html#torch.is_floating_point" title="torch.is_floating_point"><code class="xref py py-obj docutils literal notranslate"><span class="pre">is_floating_point</span></code></a></p></td>
<td><p>Returns True if the data type of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> is a floating point data type i.e., one of <code class="docutils literal notranslate"><span class="pre">torch.float64</span></code>, <code class="docutils literal notranslate"><span class="pre">torch.float32</span></code> and <code class="docutils literal notranslate"><span class="pre">torch.float16</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.is_nonzero"/><a class="reference internal" href="generated/torch.is_nonzero.html#torch.is_nonzero" title="torch.is_nonzero"><code class="xref py py-obj docutils literal notranslate"><span class="pre">is_nonzero</span></code></a></p></td>
<td><p>Returns True if the <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> is a single element tensor which is not equal to zero after type conversions.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.set_default_dtype"/><a class="reference internal" href="generated/torch.set_default_dtype.html#torch.set_default_dtype" title="torch.set_default_dtype"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_default_dtype</span></code></a></p></td>
<td><p>Sets the default floating point dtype to <code class="xref py py-attr docutils literal notranslate"><span class="pre">d</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.get_default_dtype"/><a class="reference internal" href="generated/torch.get_default_dtype.html#torch.get_default_dtype" title="torch.get_default_dtype"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_default_dtype</span></code></a></p></td>
<td><p>Get the current default floating point <a class="reference internal" href="tensor_attributes.html#torch.torch.dtype" title="torch.torch.dtype"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.dtype</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.set_default_tensor_type"/><a class="reference internal" href="generated/torch.set_default_tensor_type.html#torch.set_default_tensor_type" title="torch.set_default_tensor_type"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_default_tensor_type</span></code></a></p></td>
<td><p>Sets the default <code class="docutils literal notranslate"><span class="pre">torch.Tensor</span></code> type to floating point tensor type <code class="docutils literal notranslate"><span class="pre">t</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.numel"/><a class="reference internal" href="generated/torch.numel.html#torch.numel" title="torch.numel"><code class="xref py py-obj docutils literal notranslate"><span class="pre">numel</span></code></a></p></td>
<td><p>Returns the total number of elements in the <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.set_printoptions"/><a class="reference internal" href="generated/torch.set_printoptions.html#torch.set_printoptions" title="torch.set_printoptions"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_printoptions</span></code></a></p></td>
<td><p>Set options for printing.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.set_flush_denormal"/><a class="reference internal" href="generated/torch.set_flush_denormal.html#torch.set_flush_denormal" title="torch.set_flush_denormal"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_flush_denormal</span></code></a></p></td>
<td><p>Disables denormal floating numbers on CPU.</p></td>
</tr>
</tbody>
</table>
<div class="section" id="creation-ops">
<span id="tensor-creation-ops"></span><h3>Creation Ops<a class="headerlink" href="#creation-ops" title="Permalink to this headline">¶</a></h3>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>Random sampling creation ops are listed under <a class="reference internal" href="#random-sampling"><span class="std std-ref">Random sampling</span></a> and
include:
<a class="reference internal" href="generated/torch.rand.html#torch.rand" title="torch.rand"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.rand()</span></code></a>
<a class="reference internal" href="generated/torch.rand_like.html#torch.rand_like" title="torch.rand_like"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.rand_like()</span></code></a>
<a class="reference internal" href="generated/torch.randn.html#torch.randn" title="torch.randn"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.randn()</span></code></a>
<a class="reference internal" href="generated/torch.randn_like.html#torch.randn_like" title="torch.randn_like"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.randn_like()</span></code></a>
<a class="reference internal" href="generated/torch.randint.html#torch.randint" title="torch.randint"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.randint()</span></code></a>
<a class="reference internal" href="generated/torch.randint_like.html#torch.randint_like" title="torch.randint_like"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.randint_like()</span></code></a>
<a class="reference internal" href="generated/torch.randperm.html#torch.randperm" title="torch.randperm"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.randperm()</span></code></a>
You may also use <a class="reference internal" href="generated/torch.empty.html#torch.empty" title="torch.empty"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.empty()</span></code></a> with the <a class="reference internal" href="#inplace-random-sampling"><span class="std std-ref">In-place random sampling</span></a>
methods to create <a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.Tensor</span></code></a> s with values sampled from a broader
range of distributions.</p>
</div>
<table class="longtable docutils colwidths-auto align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.tensor"/><a class="reference internal" href="generated/torch.tensor.html#torch.tensor" title="torch.tensor"><code class="xref py py-obj docutils literal notranslate"><span class="pre">tensor</span></code></a></p></td>
<td><p>Constructs a tensor with <code class="xref py py-attr docutils literal notranslate"><span class="pre">data</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.sparse_coo_tensor"/><a class="reference internal" href="generated/torch.sparse_coo_tensor.html#torch.sparse_coo_tensor" title="torch.sparse_coo_tensor"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sparse_coo_tensor</span></code></a></p></td>
<td><p>Constructs a sparse tensors in COO(rdinate) format with non-zero elements at the given <code class="xref py py-attr docutils literal notranslate"><span class="pre">indices</span></code> with the given <code class="xref py py-attr docutils literal notranslate"><span class="pre">values</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.as_tensor"/><a class="reference internal" href="generated/torch.as_tensor.html#torch.as_tensor" title="torch.as_tensor"><code class="xref py py-obj docutils literal notranslate"><span class="pre">as_tensor</span></code></a></p></td>
<td><p>Convert the data into a <cite>torch.Tensor</cite>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.as_strided"/><a class="reference internal" href="generated/torch.as_strided.html#torch.as_strided" title="torch.as_strided"><code class="xref py py-obj docutils literal notranslate"><span class="pre">as_strided</span></code></a></p></td>
<td><p>Create a view of an existing <cite>torch.Tensor</cite> <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> with specified <code class="xref py py-attr docutils literal notranslate"><span class="pre">size</span></code>, <code class="xref py py-attr docutils literal notranslate"><span class="pre">stride</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">storage_offset</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.from_numpy"/><a class="reference internal" href="generated/torch.from_numpy.html#torch.from_numpy" title="torch.from_numpy"><code class="xref py py-obj docutils literal notranslate"><span class="pre">from_numpy</span></code></a></p></td>
<td><p>Creates a <a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><code class="xref py py-class docutils literal notranslate"><span class="pre">Tensor</span></code></a> from a <a class="reference external" href="https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray" title="(in NumPy v1.19)"><code class="xref py py-class docutils literal notranslate"><span class="pre">numpy.ndarray</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.zeros"/><a class="reference internal" href="generated/torch.zeros.html#torch.zeros" title="torch.zeros"><code class="xref py py-obj docutils literal notranslate"><span class="pre">zeros</span></code></a></p></td>
<td><p>Returns a tensor filled with the scalar value <cite>0</cite>, with the shape defined by the variable argument <code class="xref py py-attr docutils literal notranslate"><span class="pre">size</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.zeros_like"/><a class="reference internal" href="generated/torch.zeros_like.html#torch.zeros_like" title="torch.zeros_like"><code class="xref py py-obj docutils literal notranslate"><span class="pre">zeros_like</span></code></a></p></td>
<td><p>Returns a tensor filled with the scalar value <cite>0</cite>, with the same size as <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.ones"/><a class="reference internal" href="generated/torch.ones.html#torch.ones" title="torch.ones"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ones</span></code></a></p></td>
<td><p>Returns a tensor filled with the scalar value <cite>1</cite>, with the shape defined by the variable argument <code class="xref py py-attr docutils literal notranslate"><span class="pre">size</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.ones_like"/><a class="reference internal" href="generated/torch.ones_like.html#torch.ones_like" title="torch.ones_like"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ones_like</span></code></a></p></td>
<td><p>Returns a tensor filled with the scalar value <cite>1</cite>, with the same size as <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.arange"/><a class="reference internal" href="generated/torch.arange.html#torch.arange" title="torch.arange"><code class="xref py py-obj docutils literal notranslate"><span class="pre">arange</span></code></a></p></td>
<td><p>Returns a 1-D tensor of size <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">⌈</mo><mfrac><mrow><mtext>end</mtext><mo>−</mo><mtext>start</mtext></mrow><mtext>step</mtext></mfrac><mo fence="true">⌉</mo></mrow><annotation encoding="application/x-tex">\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.80002em;vertical-align:-0.65002em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">⌈</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8801079999999999em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">step</span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">end</span></span><span class="mbin mtight">−</span><span class="mord text mtight"><span class="mord mtight">start</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.481108em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">⌉</span></span></span></span></span></span>
</span> with values from the interval <code class="docutils literal notranslate"><span class="pre">[start,</span> <span class="pre">end)</span></code> taken with common difference <code class="xref py py-attr docutils literal notranslate"><span class="pre">step</span></code> beginning from <cite>start</cite>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.range"/><a class="reference internal" href="generated/torch.range.html#torch.range" title="torch.range"><code class="xref py py-obj docutils literal notranslate"><span class="pre">range</span></code></a></p></td>
<td><p>Returns a 1-D tensor of size <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo fence="true">⌊</mo><mfrac><mrow><mtext>end</mtext><mo>−</mo><mtext>start</mtext></mrow><mtext>step</mtext></mfrac><mo fence="true">⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.80002em;vertical-align:-0.65002em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">⌊</span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8801079999999999em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">step</span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">end</span></span><span class="mbin mtight">−</span><span class="mord text mtight"><span class="mord mtight">start</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.481108em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">⌋</span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span>
</span> with values from <code class="xref py py-attr docutils literal notranslate"><span class="pre">start</span></code> to <code class="xref py py-attr docutils literal notranslate"><span class="pre">end</span></code> with step <code class="xref py py-attr docutils literal notranslate"><span class="pre">step</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.linspace"/><a class="reference internal" href="generated/torch.linspace.html#torch.linspace" title="torch.linspace"><code class="xref py py-obj docutils literal notranslate"><span class="pre">linspace</span></code></a></p></td>
<td><p>Creates a one-dimensional tensor of size <code class="xref py py-attr docutils literal notranslate"><span class="pre">steps</span></code> whose values are evenly spaced from <code class="xref py py-attr docutils literal notranslate"><span class="pre">start</span></code> to <code class="xref py py-attr docutils literal notranslate"><span class="pre">end</span></code>, inclusive.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.logspace"/><a class="reference internal" href="generated/torch.logspace.html#torch.logspace" title="torch.logspace"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logspace</span></code></a></p></td>
<td><p>Creates a one-dimensional tensor of size <code class="xref py py-attr docutils literal notranslate"><span class="pre">steps</span></code> whose values are evenly spaced from <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mtext>base</mtext><mtext>start</mtext></msup></mrow><annotation encoding="application/x-tex">{{\text{{base}}}}^{{\text{{start}}}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778959999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord text"><span class="mord"><span class="mord">b</span><span class="mord">a</span><span class="mord">s</span><span class="mord">e</span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8778959999999999em;"><span style="top:-3.1473400000000002em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight"><span class="mord mtight">s</span><span class="mord mtight">t</span><span class="mord mtight">a</span><span class="mord mtight">r</span><span class="mord mtight">t</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span>
</span> to <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mtext>base</mtext><mtext>end</mtext></msup></mrow><annotation encoding="application/x-tex">{{\text{{base}}}}^{{\text{{end}}}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9334479999999998em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord text"><span class="mord"><span class="mord">b</span><span class="mord">a</span><span class="mord">s</span><span class="mord">e</span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9334479999999998em;"><span style="top:-3.1473400000000002em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight"><span class="mord mtight">e</span><span class="mord mtight">n</span><span class="mord mtight">d</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span>
</span>, inclusive, on a logarithmic scale with base <code class="xref py py-attr docutils literal notranslate"><span class="pre">base</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.eye"/><a class="reference internal" href="generated/torch.eye.html#torch.eye" title="torch.eye"><code class="xref py py-obj docutils literal notranslate"><span class="pre">eye</span></code></a></p></td>
<td><p>Returns a 2-D tensor with ones on the diagonal and zeros elsewhere.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.empty"/><a class="reference internal" href="generated/torch.empty.html#torch.empty" title="torch.empty"><code class="xref py py-obj docutils literal notranslate"><span class="pre">empty</span></code></a></p></td>
<td><p>Returns a tensor filled with uninitialized data.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.empty_like"/><a class="reference internal" href="generated/torch.empty_like.html#torch.empty_like" title="torch.empty_like"><code class="xref py py-obj docutils literal notranslate"><span class="pre">empty_like</span></code></a></p></td>
<td><p>Returns an uninitialized tensor with the same size as <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.empty_strided"/><a class="reference internal" href="generated/torch.empty_strided.html#torch.empty_strided" title="torch.empty_strided"><code class="xref py py-obj docutils literal notranslate"><span class="pre">empty_strided</span></code></a></p></td>
<td><p>Returns a tensor filled with uninitialized data.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.full"/><a class="reference internal" href="generated/torch.full.html#torch.full" title="torch.full"><code class="xref py py-obj docutils literal notranslate"><span class="pre">full</span></code></a></p></td>
<td><p>Creates a tensor of size <code class="xref py py-attr docutils literal notranslate"><span class="pre">size</span></code> filled with <code class="xref py py-attr docutils literal notranslate"><span class="pre">fill_value</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.full_like"/><a class="reference internal" href="generated/torch.full_like.html#torch.full_like" title="torch.full_like"><code class="xref py py-obj docutils literal notranslate"><span class="pre">full_like</span></code></a></p></td>
<td><p>Returns a tensor with the same size as <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> filled with <code class="xref py py-attr docutils literal notranslate"><span class="pre">fill_value</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.quantize_per_tensor"/><a class="reference internal" href="generated/torch.quantize_per_tensor.html#torch.quantize_per_tensor" title="torch.quantize_per_tensor"><code class="xref py py-obj docutils literal notranslate"><span class="pre">quantize_per_tensor</span></code></a></p></td>
<td><p>Converts a float tensor to a quantized tensor with given scale and zero point.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.quantize_per_channel"/><a class="reference internal" href="generated/torch.quantize_per_channel.html#torch.quantize_per_channel" title="torch.quantize_per_channel"><code class="xref py py-obj docutils literal notranslate"><span class="pre">quantize_per_channel</span></code></a></p></td>
<td><p>Converts a float tensor to a per-channel quantized tensor with given scales and zero points.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.dequantize"/><a class="reference internal" href="generated/torch.dequantize.html#torch.dequantize" title="torch.dequantize"><code class="xref py py-obj docutils literal notranslate"><span class="pre">dequantize</span></code></a></p></td>
<td><p>Returns an fp32 Tensor by dequantizing a quantized Tensor</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.complex"/><a class="reference internal" href="generated/torch.complex.html#torch.complex" title="torch.complex"><code class="xref py py-obj docutils literal notranslate"><span class="pre">complex</span></code></a></p></td>
<td><p>Constructs a complex tensor with its real part equal to <a class="reference internal" href="generated/torch.real.html#torch.real" title="torch.real"><code class="xref py py-attr docutils literal notranslate"><span class="pre">real</span></code></a> and its imaginary part equal to <a class="reference internal" href="generated/torch.imag.html#torch.imag" title="torch.imag"><code class="xref py py-attr docutils literal notranslate"><span class="pre">imag</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.polar"/><a class="reference internal" href="generated/torch.polar.html#torch.polar" title="torch.polar"><code class="xref py py-obj docutils literal notranslate"><span class="pre">polar</span></code></a></p></td>
<td><p>Constructs a complex tensor whose elements are Cartesian coordinates corresponding to the polar coordinates with absolute value <a class="reference internal" href="generated/torch.abs.html#torch.abs" title="torch.abs"><code class="xref py py-attr docutils literal notranslate"><span class="pre">abs</span></code></a> and angle <a class="reference internal" href="generated/torch.angle.html#torch.angle" title="torch.angle"><code class="xref py py-attr docutils literal notranslate"><span class="pre">angle</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.heaviside"/><a class="reference internal" href="generated/torch.heaviside.html#torch.heaviside" title="torch.heaviside"><code class="xref py py-obj docutils literal notranslate"><span class="pre">heaviside</span></code></a></p></td>
<td><p>Computes the Heaviside step function for each element in <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="indexing-slicing-joining-mutating-ops">
<h3>Indexing, Slicing, Joining, Mutating Ops<a class="headerlink" href="#indexing-slicing-joining-mutating-ops" title="Permalink to this headline">¶</a></h3>
<table class="longtable docutils colwidths-auto align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.cat"/><a class="reference internal" href="generated/torch.cat.html#torch.cat" title="torch.cat"><code class="xref py py-obj docutils literal notranslate"><span class="pre">cat</span></code></a></p></td>
<td><p>Concatenates the given sequence of <code class="xref py py-attr docutils literal notranslate"><span class="pre">seq</span></code> tensors in the given dimension.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.chunk"/><a class="reference internal" href="generated/torch.chunk.html#torch.chunk" title="torch.chunk"><code class="xref py py-obj docutils literal notranslate"><span class="pre">chunk</span></code></a></p></td>
<td><p>Splits a tensor into a specific number of chunks.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.dstack"/><a class="reference internal" href="generated/torch.dstack.html#torch.dstack" title="torch.dstack"><code class="xref py py-obj docutils literal notranslate"><span class="pre">dstack</span></code></a></p></td>
<td><p>Stack tensors in sequence depthwise (along third axis).</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.gather"/><a class="reference internal" href="generated/torch.gather.html#torch.gather" title="torch.gather"><code class="xref py py-obj docutils literal notranslate"><span class="pre">gather</span></code></a></p></td>
<td><p>Gathers values along an axis specified by <cite>dim</cite>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.hstack"/><a class="reference internal" href="generated/torch.hstack.html#torch.hstack" title="torch.hstack"><code class="xref py py-obj docutils literal notranslate"><span class="pre">hstack</span></code></a></p></td>
<td><p>Stack tensors in sequence horizontally (column wise).</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.index_select"/><a class="reference internal" href="generated/torch.index_select.html#torch.index_select" title="torch.index_select"><code class="xref py py-obj docutils literal notranslate"><span class="pre">index_select</span></code></a></p></td>
<td><p>Returns a new tensor which indexes the <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor along dimension <code class="xref py py-attr docutils literal notranslate"><span class="pre">dim</span></code> using the entries in <code class="xref py py-attr docutils literal notranslate"><span class="pre">index</span></code> which is a <cite>LongTensor</cite>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.masked_select"/><a class="reference internal" href="generated/torch.masked_select.html#torch.masked_select" title="torch.masked_select"><code class="xref py py-obj docutils literal notranslate"><span class="pre">masked_select</span></code></a></p></td>
<td><p>Returns a new 1-D tensor which indexes the <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor according to the boolean mask <code class="xref py py-attr docutils literal notranslate"><span class="pre">mask</span></code> which is a <cite>BoolTensor</cite>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.movedim"/><a class="reference internal" href="generated/torch.movedim.html#torch.movedim" title="torch.movedim"><code class="xref py py-obj docutils literal notranslate"><span class="pre">movedim</span></code></a></p></td>
<td><p>Moves the dimension(s) of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> at the position(s) in <code class="xref py py-attr docutils literal notranslate"><span class="pre">source</span></code> to the position(s) in <code class="xref py py-attr docutils literal notranslate"><span class="pre">destination</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.narrow"/><a class="reference internal" href="generated/torch.narrow.html#torch.narrow" title="torch.narrow"><code class="xref py py-obj docutils literal notranslate"><span class="pre">narrow</span></code></a></p></td>
<td><p>Returns a new tensor that is a narrowed version of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.nonzero"/><a class="reference internal" href="generated/torch.nonzero.html#torch.nonzero" title="torch.nonzero"><code class="xref py py-obj docutils literal notranslate"><span class="pre">nonzero</span></code></a></p></td>
<td><p></p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.reshape"/><a class="reference internal" href="generated/torch.reshape.html#torch.reshape" title="torch.reshape"><code class="xref py py-obj docutils literal notranslate"><span class="pre">reshape</span></code></a></p></td>
<td><p>Returns a tensor with the same data and number of elements as <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>, but with the specified shape.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.split"/><a class="reference internal" href="generated/torch.split.html#torch.split" title="torch.split"><code class="xref py py-obj docutils literal notranslate"><span class="pre">split</span></code></a></p></td>
<td><p>Splits the tensor into chunks.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.squeeze"/><a class="reference internal" href="generated/torch.squeeze.html#torch.squeeze" title="torch.squeeze"><code class="xref py py-obj docutils literal notranslate"><span class="pre">squeeze</span></code></a></p></td>
<td><p>Returns a tensor with all the dimensions of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> of size <cite>1</cite> removed.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.stack"/><a class="reference internal" href="generated/torch.stack.html#torch.stack" title="torch.stack"><code class="xref py py-obj docutils literal notranslate"><span class="pre">stack</span></code></a></p></td>
<td><p>Concatenates a sequence of tensors along a new dimension.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.t"/><a class="reference internal" href="generated/torch.t.html#torch.t" title="torch.t"><code class="xref py py-obj docutils literal notranslate"><span class="pre">t</span></code></a></p></td>
<td><p>Expects <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> to be <= 2-D tensor and transposes dimensions 0 and 1.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.take"/><a class="reference internal" href="generated/torch.take.html#torch.take" title="torch.take"><code class="xref py py-obj docutils literal notranslate"><span class="pre">take</span></code></a></p></td>
<td><p>Returns a new tensor with the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> at the given indices.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.transpose"/><a class="reference internal" href="generated/torch.transpose.html#torch.transpose" title="torch.transpose"><code class="xref py py-obj docutils literal notranslate"><span class="pre">transpose</span></code></a></p></td>
<td><p>Returns a tensor that is a transposed version of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.unbind"/><a class="reference internal" href="generated/torch.unbind.html#torch.unbind" title="torch.unbind"><code class="xref py py-obj docutils literal notranslate"><span class="pre">unbind</span></code></a></p></td>
<td><p>Removes a tensor dimension.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.unsqueeze"/><a class="reference internal" href="generated/torch.unsqueeze.html#torch.unsqueeze" title="torch.unsqueeze"><code class="xref py py-obj docutils literal notranslate"><span class="pre">unsqueeze</span></code></a></p></td>
<td><p>Returns a new tensor with a dimension of size one inserted at the specified position.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.vstack"/><a class="reference internal" href="generated/torch.vstack.html#torch.vstack" title="torch.vstack"><code class="xref py py-obj docutils literal notranslate"><span class="pre">vstack</span></code></a></p></td>
<td><p>Stack tensors in sequence vertically (row wise).</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.where"/><a class="reference internal" href="generated/torch.where.html#torch.where" title="torch.where"><code class="xref py py-obj docutils literal notranslate"><span class="pre">where</span></code></a></p></td>
<td><p>Return a tensor of elements selected from either <code class="xref py py-attr docutils literal notranslate"><span class="pre">x</span></code> or <code class="xref py py-attr docutils literal notranslate"><span class="pre">y</span></code>, depending on <code class="xref py py-attr docutils literal notranslate"><span class="pre">condition</span></code>.</p></td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="section" id="generators">
<span id="id1"></span><h2>Generators<a class="headerlink" href="#generators" title="Permalink to this headline">¶</a></h2>
<table class="longtable docutils colwidths-auto align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.Generator"/><a class="reference internal" href="generated/torch.Generator.html#torch.Generator" title="torch.Generator"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Generator</span></code></a></p></td>
<td><p>Creates and returns a generator object that manages the state of the algorithm which produces pseudo random numbers.</p></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="random-sampling">
<span id="id2"></span><h2>Random sampling<a class="headerlink" href="#random-sampling" title="Permalink to this headline">¶</a></h2>
<table class="longtable docutils colwidths-auto align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.seed"/><a class="reference internal" href="generated/torch.seed.html#torch.seed" title="torch.seed"><code class="xref py py-obj docutils literal notranslate"><span class="pre">seed</span></code></a></p></td>
<td><p>Sets the seed for generating random numbers to a non-deterministic random number.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.manual_seed"/><a class="reference internal" href="generated/torch.manual_seed.html#torch.manual_seed" title="torch.manual_seed"><code class="xref py py-obj docutils literal notranslate"><span class="pre">manual_seed</span></code></a></p></td>
<td><p>Sets the seed for generating random numbers.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.initial_seed"/><a class="reference internal" href="generated/torch.initial_seed.html#torch.initial_seed" title="torch.initial_seed"><code class="xref py py-obj docutils literal notranslate"><span class="pre">initial_seed</span></code></a></p></td>
<td><p>Returns the initial seed for generating random numbers as a Python <cite>long</cite>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.get_rng_state"/><a class="reference internal" href="generated/torch.get_rng_state.html#torch.get_rng_state" title="torch.get_rng_state"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_rng_state</span></code></a></p></td>
<td><p>Returns the random number generator state as a <cite>torch.ByteTensor</cite>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.set_rng_state"/><a class="reference internal" href="generated/torch.set_rng_state.html#torch.set_rng_state" title="torch.set_rng_state"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_rng_state</span></code></a></p></td>
<td><p>Sets the random number generator state.</p></td>
</tr>
</tbody>
</table>
<dl class="attribute">
<dt id="torch.torch.default_generator">
<code class="sig-prename descclassname">torch.</code><code class="sig-name descname">default_generator</code><em class="property"> Returns the default CPU torch.Generator</em><a class="headerlink" href="#torch.torch.default_generator" title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<table class="longtable docutils colwidths-auto align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.bernoulli"/><a class="reference internal" href="generated/torch.bernoulli.html#torch.bernoulli" title="torch.bernoulli"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bernoulli</span></code></a></p></td>
<td><p>Draws binary random numbers (0 or 1) from a Bernoulli distribution.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.multinomial"/><a class="reference internal" href="generated/torch.multinomial.html#torch.multinomial" title="torch.multinomial"><code class="xref py py-obj docutils literal notranslate"><span class="pre">multinomial</span></code></a></p></td>
<td><p>Returns a tensor where each row contains <code class="xref py py-attr docutils literal notranslate"><span class="pre">num_samples</span></code> indices sampled from the multinomial probability distribution located in the corresponding row of tensor <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.normal"/><a class="reference internal" href="generated/torch.normal.html#torch.normal" title="torch.normal"><code class="xref py py-obj docutils literal notranslate"><span class="pre">normal</span></code></a></p></td>
<td><p>Returns a tensor of random numbers drawn from separate normal distributions whose mean and standard deviation are given.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.poisson"/><a class="reference internal" href="generated/torch.poisson.html#torch.poisson" title="torch.poisson"><code class="xref py py-obj docutils literal notranslate"><span class="pre">poisson</span></code></a></p></td>
<td><p>Returns a tensor of the same size as <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> with each element sampled from a Poisson distribution with rate parameter given by the corresponding element in <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> i.e.,</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.rand"/><a class="reference internal" href="generated/torch.rand.html#torch.rand" title="torch.rand"><code class="xref py py-obj docutils literal notranslate"><span class="pre">rand</span></code></a></p></td>
<td><p>Returns a tensor filled with random numbers from a uniform distribution on the interval <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">[0, 1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose">)</span></span></span></span>
</span></p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.rand_like"/><a class="reference internal" href="generated/torch.rand_like.html#torch.rand_like" title="torch.rand_like"><code class="xref py py-obj docutils literal notranslate"><span class="pre">rand_like</span></code></a></p></td>
<td><p>Returns a tensor with the same size as <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> that is filled with random numbers from a uniform distribution on the interval <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">[0, 1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose">)</span></span></span></span>
</span>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.randint"/><a class="reference internal" href="generated/torch.randint.html#torch.randint" title="torch.randint"><code class="xref py py-obj docutils literal notranslate"><span class="pre">randint</span></code></a></p></td>
<td><p>Returns a tensor filled with random integers generated uniformly between <code class="xref py py-attr docutils literal notranslate"><span class="pre">low</span></code> (inclusive) and <code class="xref py py-attr docutils literal notranslate"><span class="pre">high</span></code> (exclusive).</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.randint_like"/><a class="reference internal" href="generated/torch.randint_like.html#torch.randint_like" title="torch.randint_like"><code class="xref py py-obj docutils literal notranslate"><span class="pre">randint_like</span></code></a></p></td>
<td><p>Returns a tensor with the same shape as Tensor <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> filled with random integers generated uniformly between <code class="xref py py-attr docutils literal notranslate"><span class="pre">low</span></code> (inclusive) and <code class="xref py py-attr docutils literal notranslate"><span class="pre">high</span></code> (exclusive).</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.randn"/><a class="reference internal" href="generated/torch.randn.html#torch.randn" title="torch.randn"><code class="xref py py-obj docutils literal notranslate"><span class="pre">randn</span></code></a></p></td>
<td><p>Returns a tensor filled with random numbers from a normal distribution with mean <cite>0</cite> and variance <cite>1</cite> (also called the standard normal distribution).</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.randn_like"/><a class="reference internal" href="generated/torch.randn_like.html#torch.randn_like" title="torch.randn_like"><code class="xref py py-obj docutils literal notranslate"><span class="pre">randn_like</span></code></a></p></td>
<td><p>Returns a tensor with the same size as <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> that is filled with random numbers from a normal distribution with mean 0 and variance 1.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.randperm"/><a class="reference internal" href="generated/torch.randperm.html#torch.randperm" title="torch.randperm"><code class="xref py py-obj docutils literal notranslate"><span class="pre">randperm</span></code></a></p></td>
<td><p>Returns a random permutation of integers from <code class="docutils literal notranslate"><span class="pre">0</span></code> to <code class="docutils literal notranslate"><span class="pre">n</span> <span class="pre">-</span> <span class="pre">1</span></code>.</p></td>
</tr>
</tbody>
</table>
<div class="section" id="in-place-random-sampling">
<span id="inplace-random-sampling"></span><h3>In-place random sampling<a class="headerlink" href="#in-place-random-sampling" title="Permalink to this headline">¶</a></h3>
<p>There are a few more in-place random sampling functions defined on Tensors as well. Click through to refer to their documentation:</p>
<ul class="simple">
<li><p><a class="reference internal" href="tensors.html#torch.Tensor.bernoulli_" title="torch.Tensor.bernoulli_"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.Tensor.bernoulli_()</span></code></a> - in-place version of <a class="reference internal" href="generated/torch.bernoulli.html#torch.bernoulli" title="torch.bernoulli"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.bernoulli()</span></code></a></p></li>
<li><p><a class="reference internal" href="tensors.html#torch.Tensor.cauchy_" title="torch.Tensor.cauchy_"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.Tensor.cauchy_()</span></code></a> - numbers drawn from the Cauchy distribution</p></li>
<li><p><a class="reference internal" href="tensors.html#torch.Tensor.exponential_" title="torch.Tensor.exponential_"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.Tensor.exponential_()</span></code></a> - numbers drawn from the exponential distribution</p></li>
<li><p><a class="reference internal" href="tensors.html#torch.Tensor.geometric_" title="torch.Tensor.geometric_"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.Tensor.geometric_()</span></code></a> - elements drawn from the geometric distribution</p></li>
<li><p><a class="reference internal" href="tensors.html#torch.Tensor.log_normal_" title="torch.Tensor.log_normal_"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.Tensor.log_normal_()</span></code></a> - samples from the log-normal distribution</p></li>
<li><p><a class="reference internal" href="tensors.html#torch.Tensor.normal_" title="torch.Tensor.normal_"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.Tensor.normal_()</span></code></a> - in-place version of <a class="reference internal" href="generated/torch.normal.html#torch.normal" title="torch.normal"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.normal()</span></code></a></p></li>
<li><p><a class="reference internal" href="tensors.html#torch.Tensor.random_" title="torch.Tensor.random_"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.Tensor.random_()</span></code></a> - numbers sampled from the discrete uniform distribution</p></li>
<li><p><a class="reference internal" href="tensors.html#torch.Tensor.uniform_" title="torch.Tensor.uniform_"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.Tensor.uniform_()</span></code></a> - numbers sampled from the continuous uniform distribution</p></li>
</ul>
</div>
<div class="section" id="quasi-random-sampling">
<h3>Quasi-random sampling<a class="headerlink" href="#quasi-random-sampling" title="Permalink to this headline">¶</a></h3>
<table class="longtable docutils colwidths-auto align-default">
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="generated/torch.quasirandom.SobolEngine.html#torch.quasirandom.SobolEngine" title="torch.quasirandom.SobolEngine"><code class="xref py py-obj docutils literal notranslate"><span class="pre">quasirandom.SobolEngine</span></code></a></p></td>
<td><p>The <a class="reference internal" href="generated/torch.quasirandom.SobolEngine.html#torch.quasirandom.SobolEngine" title="torch.quasirandom.SobolEngine"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.quasirandom.SobolEngine</span></code></a> is an engine for generating (scrambled) Sobol sequences.</p></td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="section" id="serialization">
<h2>Serialization<a class="headerlink" href="#serialization" title="Permalink to this headline">¶</a></h2>
<table class="longtable docutils colwidths-auto align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.save"/><a class="reference internal" href="generated/torch.save.html#torch.save" title="torch.save"><code class="xref py py-obj docutils literal notranslate"><span class="pre">save</span></code></a></p></td>
<td><p>Saves an object to a disk file.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.load"/><a class="reference internal" href="generated/torch.load.html#torch.load" title="torch.load"><code class="xref py py-obj docutils literal notranslate"><span class="pre">load</span></code></a></p></td>
<td><p>Loads an object saved with <a class="reference internal" href="generated/torch.save.html#torch.save" title="torch.save"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.save()</span></code></a> from a file.</p></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="parallelism">
<h2>Parallelism<a class="headerlink" href="#parallelism" title="Permalink to this headline">¶</a></h2>
<table class="longtable docutils colwidths-auto align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.get_num_threads"/><a class="reference internal" href="generated/torch.get_num_threads.html#torch.get_num_threads" title="torch.get_num_threads"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_num_threads</span></code></a></p></td>
<td><p>Returns the number of threads used for parallelizing CPU operations</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.set_num_threads"/><a class="reference internal" href="generated/torch.set_num_threads.html#torch.set_num_threads" title="torch.set_num_threads"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_num_threads</span></code></a></p></td>
<td><p>Sets the number of threads used for intraop parallelism on CPU.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.get_num_interop_threads"/><a class="reference internal" href="generated/torch.get_num_interop_threads.html#torch.get_num_interop_threads" title="torch.get_num_interop_threads"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_num_interop_threads</span></code></a></p></td>
<td><p>Returns the number of threads used for inter-op parallelism on CPU (e.g.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.set_num_interop_threads"/><a class="reference internal" href="generated/torch.set_num_interop_threads.html#torch.set_num_interop_threads" title="torch.set_num_interop_threads"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_num_interop_threads</span></code></a></p></td>
<td><p>Sets the number of threads used for interop parallelism (e.g.</p></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="locally-disabling-gradient-computation">
<h2>Locally disabling gradient computation<a class="headerlink" href="#locally-disabling-gradient-computation" title="Permalink to this headline">¶</a></h2>
<p>The context managers <a class="reference internal" href="generated/torch.no_grad.html#torch.no_grad" title="torch.no_grad"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.no_grad()</span></code></a>, <a class="reference internal" href="generated/torch.enable_grad.html#torch.enable_grad" title="torch.enable_grad"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.enable_grad()</span></code></a>, and
<a class="reference internal" href="generated/torch.set_grad_enabled.html#torch.set_grad_enabled" title="torch.set_grad_enabled"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.set_grad_enabled()</span></code></a> are helpful for locally disabling and enabling
gradient computation. See <a class="reference internal" href="autograd.html#locally-disable-grad"><span class="std std-ref">Locally disabling gradient computation</span></a> for more details on
their usage. These context managers are thread local, so they won’t
work if you send work to another thread using the <code class="docutils literal notranslate"><span class="pre">threading</span></code> module, etc.</p>
<p>Examples:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">():</span>
<span class="gp">... </span> <span class="n">y</span> <span class="o">=</span> <span class="n">x</span> <span class="o">*</span> <span class="mi">2</span>
<span class="gp">>>> </span><span class="n">y</span><span class="o">.</span><span class="n">requires_grad</span>
<span class="go">False</span>
<span class="gp">>>> </span><span class="n">is_train</span> <span class="o">=</span> <span class="kc">False</span>
<span class="gp">>>> </span><span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">set_grad_enabled</span><span class="p">(</span><span class="n">is_train</span><span class="p">):</span>
<span class="gp">... </span> <span class="n">y</span> <span class="o">=</span> <span class="n">x</span> <span class="o">*</span> <span class="mi">2</span>
<span class="gp">>>> </span><span class="n">y</span><span class="o">.</span><span class="n">requires_grad</span>
<span class="go">False</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">set_grad_enabled</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span> <span class="c1"># this can also be used as a function</span>
<span class="gp">>>> </span><span class="n">y</span> <span class="o">=</span> <span class="n">x</span> <span class="o">*</span> <span class="mi">2</span>
<span class="gp">>>> </span><span class="n">y</span><span class="o">.</span><span class="n">requires_grad</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">set_grad_enabled</span><span class="p">(</span><span class="kc">False</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">y</span> <span class="o">=</span> <span class="n">x</span> <span class="o">*</span> <span class="mi">2</span>
<span class="gp">>>> </span><span class="n">y</span><span class="o">.</span><span class="n">requires_grad</span>
<span class="go">False</span>
</pre></div>
</div>
<table class="longtable docutils colwidths-auto align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.no_grad"/><a class="reference internal" href="generated/torch.no_grad.html#torch.no_grad" title="torch.no_grad"><code class="xref py py-obj docutils literal notranslate"><span class="pre">no_grad</span></code></a></p></td>
<td><p>Context-manager that disabled gradient calculation.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.enable_grad"/><a class="reference internal" href="generated/torch.enable_grad.html#torch.enable_grad" title="torch.enable_grad"><code class="xref py py-obj docutils literal notranslate"><span class="pre">enable_grad</span></code></a></p></td>
<td><p>Context-manager that enables gradient calculation.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.set_grad_enabled"/><a class="reference internal" href="generated/torch.set_grad_enabled.html#torch.set_grad_enabled" title="torch.set_grad_enabled"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_grad_enabled</span></code></a></p></td>
<td><p>Context-manager that sets gradient calculation to on or off.</p></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="math-operations">
<h2>Math operations<a class="headerlink" href="#math-operations" title="Permalink to this headline">¶</a></h2>
<div class="section" id="pointwise-ops">
<h3>Pointwise Ops<a class="headerlink" href="#pointwise-ops" title="Permalink to this headline">¶</a></h3>
<table class="longtable docutils colwidths-auto align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.abs"/><a class="reference internal" href="generated/torch.abs.html#torch.abs" title="torch.abs"><code class="xref py py-obj docutils literal notranslate"><span class="pre">abs</span></code></a></p></td>
<td><p>Computes the absolute value of each element in <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.absolute"/><a class="reference internal" href="generated/torch.absolute.html#torch.absolute" title="torch.absolute"><code class="xref py py-obj docutils literal notranslate"><span class="pre">absolute</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.abs.html#torch.abs" title="torch.abs"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.abs()</span></code></a></p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.acos"/><a class="reference internal" href="generated/torch.acos.html#torch.acos" title="torch.acos"><code class="xref py py-obj docutils literal notranslate"><span class="pre">acos</span></code></a></p></td>
<td><p>Computes the inverse cosine of each element in <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.arccos"/><a class="reference internal" href="generated/torch.arccos.html#torch.arccos" title="torch.arccos"><code class="xref py py-obj docutils literal notranslate"><span class="pre">arccos</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.acos.html#torch.acos" title="torch.acos"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.acos()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.acosh"/><a class="reference internal" href="generated/torch.acosh.html#torch.acosh" title="torch.acosh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">acosh</span></code></a></p></td>
<td><p>Returns a new tensor with the inverse hyperbolic cosine of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.arccosh"/><a class="reference internal" href="generated/torch.arccosh.html#torch.arccosh" title="torch.arccosh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">arccosh</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.acosh.html#torch.acosh" title="torch.acosh"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.acosh()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.add"/><a class="reference internal" href="generated/torch.add.html#torch.add" title="torch.add"><code class="xref py py-obj docutils literal notranslate"><span class="pre">add</span></code></a></p></td>
<td><p>Adds the scalar <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code> to each element of the input <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and returns a new resulting tensor.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.addcdiv"/><a class="reference internal" href="generated/torch.addcdiv.html#torch.addcdiv" title="torch.addcdiv"><code class="xref py py-obj docutils literal notranslate"><span class="pre">addcdiv</span></code></a></p></td>
<td><p>Performs the element-wise division of <code class="xref py py-attr docutils literal notranslate"><span class="pre">tensor1</span></code> by <code class="xref py py-attr docutils literal notranslate"><span class="pre">tensor2</span></code>, multiply the result by the scalar <code class="xref py py-attr docutils literal notranslate"><span class="pre">value</span></code> and add it to <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.addcmul"/><a class="reference internal" href="generated/torch.addcmul.html#torch.addcmul" title="torch.addcmul"><code class="xref py py-obj docutils literal notranslate"><span class="pre">addcmul</span></code></a></p></td>
<td><p>Performs the element-wise multiplication of <code class="xref py py-attr docutils literal notranslate"><span class="pre">tensor1</span></code> by <code class="xref py py-attr docutils literal notranslate"><span class="pre">tensor2</span></code>, multiply the result by the scalar <code class="xref py py-attr docutils literal notranslate"><span class="pre">value</span></code> and add it to <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.angle"/><a class="reference internal" href="generated/torch.angle.html#torch.angle" title="torch.angle"><code class="xref py py-obj docutils literal notranslate"><span class="pre">angle</span></code></a></p></td>
<td><p>Computes the element-wise angle (in radians) of the given <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.asin"/><a class="reference internal" href="generated/torch.asin.html#torch.asin" title="torch.asin"><code class="xref py py-obj docutils literal notranslate"><span class="pre">asin</span></code></a></p></td>
<td><p>Returns a new tensor with the arcsine of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.arcsin"/><a class="reference internal" href="generated/torch.arcsin.html#torch.arcsin" title="torch.arcsin"><code class="xref py py-obj docutils literal notranslate"><span class="pre">arcsin</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.asin.html#torch.asin" title="torch.asin"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.asin()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.asinh"/><a class="reference internal" href="generated/torch.asinh.html#torch.asinh" title="torch.asinh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">asinh</span></code></a></p></td>
<td><p>Returns a new tensor with the inverse hyperbolic sine of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.arcsinh"/><a class="reference internal" href="generated/torch.arcsinh.html#torch.arcsinh" title="torch.arcsinh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">arcsinh</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.asinh.html#torch.asinh" title="torch.asinh"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.asinh()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.atan"/><a class="reference internal" href="generated/torch.atan.html#torch.atan" title="torch.atan"><code class="xref py py-obj docutils literal notranslate"><span class="pre">atan</span></code></a></p></td>
<td><p>Returns a new tensor with the arctangent of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.arctan"/><a class="reference internal" href="generated/torch.arctan.html#torch.arctan" title="torch.arctan"><code class="xref py py-obj docutils literal notranslate"><span class="pre">arctan</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.atan.html#torch.atan" title="torch.atan"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.atan()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.atanh"/><a class="reference internal" href="generated/torch.atanh.html#torch.atanh" title="torch.atanh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">atanh</span></code></a></p></td>
<td><p>Returns a new tensor with the inverse hyperbolic tangent of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.arctanh"/><a class="reference internal" href="generated/torch.arctanh.html#torch.arctanh" title="torch.arctanh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">arctanh</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.atanh.html#torch.atanh" title="torch.atanh"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.atanh()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.atan2"/><a class="reference internal" href="generated/torch.atan2.html#torch.atan2" title="torch.atan2"><code class="xref py py-obj docutils literal notranslate"><span class="pre">atan2</span></code></a></p></td>
<td><p>Element-wise arctangent of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mtext>input</mtext><mi>i</mi></msub><mi mathvariant="normal">/</mi><msub><mtext>other</mtext><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\text{input}_{i} / \text{other}_{i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord text"><span class="mord">input</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.21752399999999997em;"><span style="top:-2.4558600000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.24414em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord text"><span class="mord">other</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>
</span> with consideration of the quadrant.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.bitwise_not"/><a class="reference internal" href="generated/torch.bitwise_not.html#torch.bitwise_not" title="torch.bitwise_not"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bitwise_not</span></code></a></p></td>
<td><p>Computes the bitwise NOT of the given input tensor.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.bitwise_and"/><a class="reference internal" href="generated/torch.bitwise_and.html#torch.bitwise_and" title="torch.bitwise_and"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bitwise_and</span></code></a></p></td>
<td><p>Computes the bitwise AND of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.bitwise_or"/><a class="reference internal" href="generated/torch.bitwise_or.html#torch.bitwise_or" title="torch.bitwise_or"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bitwise_or</span></code></a></p></td>
<td><p>Computes the bitwise OR of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.bitwise_xor"/><a class="reference internal" href="generated/torch.bitwise_xor.html#torch.bitwise_xor" title="torch.bitwise_xor"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bitwise_xor</span></code></a></p></td>
<td><p>Computes the bitwise XOR of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.ceil"/><a class="reference internal" href="generated/torch.ceil.html#torch.ceil" title="torch.ceil"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ceil</span></code></a></p></td>
<td><p>Returns a new tensor with the ceil of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>, the smallest integer greater than or equal to each element.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.clamp"/><a class="reference internal" href="generated/torch.clamp.html#torch.clamp" title="torch.clamp"><code class="xref py py-obj docutils literal notranslate"><span class="pre">clamp</span></code></a></p></td>
<td><p>Clamp all elements in <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> into the range <cite>[</cite> <a class="reference internal" href="generated/torch.min.html#torch.min" title="torch.min"><code class="xref py py-attr docutils literal notranslate"><span class="pre">min</span></code></a>, <a class="reference internal" href="generated/torch.max.html#torch.max" title="torch.max"><code class="xref py py-attr docutils literal notranslate"><span class="pre">max</span></code></a> <cite>]</cite> and return a resulting tensor:</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.clip"/><a class="reference internal" href="generated/torch.clip.html#torch.clip" title="torch.clip"><code class="xref py py-obj docutils literal notranslate"><span class="pre">clip</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.clamp.html#torch.clamp" title="torch.clamp"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.clamp()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.conj"/><a class="reference internal" href="generated/torch.conj.html#torch.conj" title="torch.conj"><code class="xref py py-obj docutils literal notranslate"><span class="pre">conj</span></code></a></p></td>
<td><p>Computes the element-wise conjugate of the given <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.cos"/><a class="reference internal" href="generated/torch.cos.html#torch.cos" title="torch.cos"><code class="xref py py-obj docutils literal notranslate"><span class="pre">cos</span></code></a></p></td>
<td><p>Returns a new tensor with the cosine of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.cosh"/><a class="reference internal" href="generated/torch.cosh.html#torch.cosh" title="torch.cosh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">cosh</span></code></a></p></td>
<td><p>Returns a new tensor with the hyperbolic cosine of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.deg2rad"/><a class="reference internal" href="generated/torch.deg2rad.html#torch.deg2rad" title="torch.deg2rad"><code class="xref py py-obj docutils literal notranslate"><span class="pre">deg2rad</span></code></a></p></td>
<td><p>Returns a new tensor with each of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> converted from angles in degrees to radians.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.div"/><a class="reference internal" href="generated/torch.div.html#torch.div" title="torch.div"><code class="xref py py-obj docutils literal notranslate"><span class="pre">div</span></code></a></p></td>
<td><p>Divides each element of the input <code class="docutils literal notranslate"><span class="pre">input</span></code> by the corresponding element of <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.divide"/><a class="reference internal" href="generated/torch.divide.html#torch.divide" title="torch.divide"><code class="xref py py-obj docutils literal notranslate"><span class="pre">divide</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.div.html#torch.div" title="torch.div"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.div()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.digamma"/><a class="reference internal" href="generated/torch.digamma.html#torch.digamma" title="torch.digamma"><code class="xref py py-obj docutils literal notranslate"><span class="pre">digamma</span></code></a></p></td>
<td><p>Computes the logarithmic derivative of the gamma function on <cite>input</cite>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.erf"/><a class="reference internal" href="generated/torch.erf.html#torch.erf" title="torch.erf"><code class="xref py py-obj docutils literal notranslate"><span class="pre">erf</span></code></a></p></td>
<td><p>Computes the error function of each element.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.erfc"/><a class="reference internal" href="generated/torch.erfc.html#torch.erfc" title="torch.erfc"><code class="xref py py-obj docutils literal notranslate"><span class="pre">erfc</span></code></a></p></td>
<td><p>Computes the complementary error function of each element of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.erfinv"/><a class="reference internal" href="generated/torch.erfinv.html#torch.erfinv" title="torch.erfinv"><code class="xref py py-obj docutils literal notranslate"><span class="pre">erfinv</span></code></a></p></td>
<td><p>Computes the inverse error function of each element of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.exp"/><a class="reference internal" href="generated/torch.exp.html#torch.exp" title="torch.exp"><code class="xref py py-obj docutils literal notranslate"><span class="pre">exp</span></code></a></p></td>
<td><p>Returns a new tensor with the exponential of the elements of the input tensor <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.exp2"/><a class="reference internal" href="generated/torch.exp2.html#torch.exp2" title="torch.exp2"><code class="xref py py-obj docutils literal notranslate"><span class="pre">exp2</span></code></a></p></td>
<td><p>Computes the base two exponential function of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.expm1"/><a class="reference internal" href="generated/torch.expm1.html#torch.expm1" title="torch.expm1"><code class="xref py py-obj docutils literal notranslate"><span class="pre">expm1</span></code></a></p></td>
<td><p>Returns a new tensor with the exponential of the elements minus 1 of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.fix"/><a class="reference internal" href="generated/torch.fix.html#torch.fix" title="torch.fix"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fix</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.trunc.html#torch.trunc" title="torch.trunc"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.trunc()</span></code></a></p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.floor"/><a class="reference internal" href="generated/torch.floor.html#torch.floor" title="torch.floor"><code class="xref py py-obj docutils literal notranslate"><span class="pre">floor</span></code></a></p></td>
<td><p>Returns a new tensor with the floor of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>, the largest integer less than or equal to each element.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.floor_divide"/><a class="reference internal" href="generated/torch.floor_divide.html#torch.floor_divide" title="torch.floor_divide"><code class="xref py py-obj docutils literal notranslate"><span class="pre">floor_divide</span></code></a></p></td>
<td><p></p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.fmod"/><a class="reference internal" href="generated/torch.fmod.html#torch.fmod" title="torch.fmod"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fmod</span></code></a></p></td>
<td><p>Computes the element-wise remainder of division.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.frac"/><a class="reference internal" href="generated/torch.frac.html#torch.frac" title="torch.frac"><code class="xref py py-obj docutils literal notranslate"><span class="pre">frac</span></code></a></p></td>
<td><p>Computes the fractional portion of each element in <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.imag"/><a class="reference internal" href="generated/torch.imag.html#torch.imag" title="torch.imag"><code class="xref py py-obj docutils literal notranslate"><span class="pre">imag</span></code></a></p></td>
<td><p>Returns a new tensor containing imaginary values of the <code class="xref py py-attr docutils literal notranslate"><span class="pre">self</span></code> tensor.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.lerp"/><a class="reference internal" href="generated/torch.lerp.html#torch.lerp" title="torch.lerp"><code class="xref py py-obj docutils literal notranslate"><span class="pre">lerp</span></code></a></p></td>
<td><p>Does a linear interpolation of two tensors <code class="xref py py-attr docutils literal notranslate"><span class="pre">start</span></code> (given by <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>) and <code class="xref py py-attr docutils literal notranslate"><span class="pre">end</span></code> based on a scalar or tensor <code class="xref py py-attr docutils literal notranslate"><span class="pre">weight</span></code> and returns the resulting <code class="xref py py-attr docutils literal notranslate"><span class="pre">out</span></code> tensor.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.lgamma"/><a class="reference internal" href="generated/torch.lgamma.html#torch.lgamma" title="torch.lgamma"><code class="xref py py-obj docutils literal notranslate"><span class="pre">lgamma</span></code></a></p></td>
<td><p>Computes the logarithm of the gamma function on <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.log"/><a class="reference internal" href="generated/torch.log.html#torch.log" title="torch.log"><code class="xref py py-obj docutils literal notranslate"><span class="pre">log</span></code></a></p></td>
<td><p>Returns a new tensor with the natural logarithm of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.log10"/><a class="reference internal" href="generated/torch.log10.html#torch.log10" title="torch.log10"><code class="xref py py-obj docutils literal notranslate"><span class="pre">log10</span></code></a></p></td>
<td><p>Returns a new tensor with the logarithm to the base 10 of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.log1p"/><a class="reference internal" href="generated/torch.log1p.html#torch.log1p" title="torch.log1p"><code class="xref py py-obj docutils literal notranslate"><span class="pre">log1p</span></code></a></p></td>
<td><p>Returns a new tensor with the natural logarithm of (1 + <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>).</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.log2"/><a class="reference internal" href="generated/torch.log2.html#torch.log2" title="torch.log2"><code class="xref py py-obj docutils literal notranslate"><span class="pre">log2</span></code></a></p></td>
<td><p>Returns a new tensor with the logarithm to the base 2 of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.logaddexp"/><a class="reference internal" href="generated/torch.logaddexp.html#torch.logaddexp" title="torch.logaddexp"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logaddexp</span></code></a></p></td>
<td><p>Logarithm of the sum of exponentiations of the inputs.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.logaddexp2"/><a class="reference internal" href="generated/torch.logaddexp2.html#torch.logaddexp2" title="torch.logaddexp2"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logaddexp2</span></code></a></p></td>
<td><p>Logarithm of the sum of exponentiations of the inputs in base-2.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.logical_and"/><a class="reference internal" href="generated/torch.logical_and.html#torch.logical_and" title="torch.logical_and"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logical_and</span></code></a></p></td>
<td><p>Computes the element-wise logical AND of the given input tensors.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.logical_not"/><a class="reference internal" href="generated/torch.logical_not.html#torch.logical_not" title="torch.logical_not"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logical_not</span></code></a></p></td>
<td><p>Computes the element-wise logical NOT of the given input tensor.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.logical_or"/><a class="reference internal" href="generated/torch.logical_or.html#torch.logical_or" title="torch.logical_or"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logical_or</span></code></a></p></td>
<td><p>Computes the element-wise logical OR of the given input tensors.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.logical_xor"/><a class="reference internal" href="generated/torch.logical_xor.html#torch.logical_xor" title="torch.logical_xor"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logical_xor</span></code></a></p></td>
<td><p>Computes the element-wise logical XOR of the given input tensors.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.logit"/><a class="reference internal" href="generated/torch.logit.html#torch.logit" title="torch.logit"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logit</span></code></a></p></td>
<td><p>Returns a new tensor with the logit of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.hypot"/><a class="reference internal" href="generated/torch.hypot.html#torch.hypot" title="torch.hypot"><code class="xref py py-obj docutils literal notranslate"><span class="pre">hypot</span></code></a></p></td>
<td><p>Given the legs of a right triangle, return its hypotenuse.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.i0"/><a class="reference internal" href="generated/torch.i0.html#torch.i0" title="torch.i0"><code class="xref py py-obj docutils literal notranslate"><span class="pre">i0</span></code></a></p></td>
<td><p>Computes the zeroth order modified Bessel function of the first kind for each element of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.mul"/><a class="reference internal" href="generated/torch.mul.html#torch.mul" title="torch.mul"><code class="xref py py-obj docutils literal notranslate"><span class="pre">mul</span></code></a></p></td>
<td><p>Multiplies each element of the input <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> with the scalar <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code> and returns a new resulting tensor.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.multiply"/><a class="reference internal" href="generated/torch.multiply.html#torch.multiply" title="torch.multiply"><code class="xref py py-obj docutils literal notranslate"><span class="pre">multiply</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.mul.html#torch.mul" title="torch.mul"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.mul()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.mvlgamma"/><a class="reference internal" href="generated/torch.mvlgamma.html#torch.mvlgamma" title="torch.mvlgamma"><code class="xref py py-obj docutils literal notranslate"><span class="pre">mvlgamma</span></code></a></p></td>
<td><p>Computes the <a class="reference external" href="https://en.wikipedia.org/wiki/Multivariate_gamma_function">multivariate log-gamma function</a>) with dimension <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathnormal">p</span></span></span></span>
</span> element-wise, given by</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.neg"/><a class="reference internal" href="generated/torch.neg.html#torch.neg" title="torch.neg"><code class="xref py py-obj docutils literal notranslate"><span class="pre">neg</span></code></a></p></td>
<td><p>Returns a new tensor with the negative of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.negative"/><a class="reference internal" href="generated/torch.negative.html#torch.negative" title="torch.negative"><code class="xref py py-obj docutils literal notranslate"><span class="pre">negative</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.neg.html#torch.neg" title="torch.neg"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.neg()</span></code></a></p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.nextafter"/><a class="reference internal" href="generated/torch.nextafter.html#torch.nextafter" title="torch.nextafter"><code class="xref py py-obj docutils literal notranslate"><span class="pre">nextafter</span></code></a></p></td>
<td><p>Return the next floating-point value after <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> towards <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>, elementwise.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.polygamma"/><a class="reference internal" href="generated/torch.polygamma.html#torch.polygamma" title="torch.polygamma"><code class="xref py py-obj docutils literal notranslate"><span class="pre">polygamma</span></code></a></p></td>
<td><p>Computes the <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>n</mi><mrow><mi>t</mi><mi>h</mi></mrow></msup></mrow><annotation encoding="application/x-tex">n^{th}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.849108em;vertical-align:0em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.849108em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">t</span><span class="mord mathnormal mtight">h</span></span></span></span></span></span></span></span></span></span></span></span>
</span> derivative of the digamma function on <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.pow"/><a class="reference internal" href="generated/torch.pow.html#torch.pow" title="torch.pow"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pow</span></code></a></p></td>
<td><p>Takes the power of each element in <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> with <code class="xref py py-attr docutils literal notranslate"><span class="pre">exponent</span></code> and returns a tensor with the result.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.rad2deg"/><a class="reference internal" href="generated/torch.rad2deg.html#torch.rad2deg" title="torch.rad2deg"><code class="xref py py-obj docutils literal notranslate"><span class="pre">rad2deg</span></code></a></p></td>
<td><p>Returns a new tensor with each of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> converted from angles in radians to degrees.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.real"/><a class="reference internal" href="generated/torch.real.html#torch.real" title="torch.real"><code class="xref py py-obj docutils literal notranslate"><span class="pre">real</span></code></a></p></td>
<td><p>Returns a new tensor containing real values of the <code class="xref py py-attr docutils literal notranslate"><span class="pre">self</span></code> tensor.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.reciprocal"/><a class="reference internal" href="generated/torch.reciprocal.html#torch.reciprocal" title="torch.reciprocal"><code class="xref py py-obj docutils literal notranslate"><span class="pre">reciprocal</span></code></a></p></td>
<td><p>Returns a new tensor with the reciprocal of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code></p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.remainder"/><a class="reference internal" href="generated/torch.remainder.html#torch.remainder" title="torch.remainder"><code class="xref py py-obj docutils literal notranslate"><span class="pre">remainder</span></code></a></p></td>
<td><p>Computes the element-wise remainder of division.</p></td>
</tr>