forked from pytorch/pytorch.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistributed.tensor.parallel.html
1093 lines (884 loc) · 70.3 KB
/
distributed.tensor.parallel.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Tensor Parallelism - torch.distributed.tensor.parallel — PyTorch 2.0 documentation</title>
<link rel="canonical" href="https://pytorch.org/docs/stable/distributed.tensor.parallel.html"/>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/copybutton.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="_static/katex-math.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinx-dropdown.css" type="text/css" />
<link rel="stylesheet" href="_static/panels-bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="_static/css/jit.css" type="text/css" />
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Distributed Checkpoint - torch.distributed.checkpoint" href="distributed.checkpoint.html" />
<link rel="prev" title="Distributed Optimizers" href="distributed.optim.html" />
<!-- Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-117752657-2"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-117752657-2');
</script>
<!-- End Google Analytics -->
<script src="_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active docs-active">
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-orange-arrow">
Docs
</a>
<div class="resources-dropdown-menu">
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/docs/stable/index.html">
<span class="dropdown-title">PyTorch</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/audio/stable/index.html">
<span class="dropdown-title">torchaudio</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/text/stable/index.html">
<span class="dropdown-title">torchtext</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/vision/stable/index.html">
<span class="dropdown-title">torchvision</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torcharrow">
<span class="dropdown-title">torcharrow</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/data">
<span class="dropdown-title">TorchData</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchrec">
<span class="dropdown-title">TorchRec</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/serve/">
<span class="dropdown-title">TorchServe</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchx/">
<span class="dropdown-title">TorchX</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/xla">
<span class="dropdown-title">PyTorch on XLA Devices</span>
<p></p>
</a>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-arrow">
Resources
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/features">
<span class="dropdown-title">About</span>
<p>Learn about PyTorch’s features and capabilities</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/foundation">
<span class="dropdown-title">PyTorch Foundation</span>
<p>Learn about the PyTorch foundation</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/#community-module">
<span class="dropdown-title">Community</span>
<p>Join the PyTorch developer community to contribute, learn, and get your questions answered.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/community-stories">
<span class="dropdown-title">Community Stories</span>
<p>Learn how our community solves real, everyday machine learning problems with PyTorch.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/resources">
<span class="dropdown-title">Developer Resources</span>
<p>Find resources and get questions answered</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/events">
<span class="dropdown-title">Events</span>
<p>Find events, webinars, and podcasts</p>
</a>
<a class="nav-dropdown-item" href="https://discuss.pytorch.org/" target="_blank">
<span class="dropdown-title">Forums</span>
<p>A place to discuss PyTorch code, issues, install, research</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/hub">
<span class="dropdown-title">Models (Beta)</span>
<p>Discover, publish, and reuse pre-trained models</p>
</a>
</div>
</div>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
<a href='https://pytorch.org/docs/versions.html'>2.0 ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Community</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="community/build_ci_governance.html">PyTorch Governance | Build + CI</a></li>
<li class="toctree-l1"><a class="reference internal" href="community/contribution_guide.html">PyTorch Contribution Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="community/design.html">PyTorch Design Philosophy</a></li>
<li class="toctree-l1"><a class="reference internal" href="community/governance.html">PyTorch Governance | Mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="community/persons_of_interest.html">PyTorch Governance | Maintainers</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="notes/amp_examples.html">CUDA Automatic Mixed Precision examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/autograd.html">Autograd mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/broadcasting.html">Broadcasting semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/cpu_threading_torchscript_inference.html">CPU threading and TorchScript inference</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/cuda.html">CUDA semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/ddp.html">Distributed Data Parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/extending.html">Extending PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/extending.func.html">Extending torch.func with autograd.Function</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/gradcheck.html">Gradcheck mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/hip.html">HIP (ROCm) semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/large_scale_deployments.html">Features for large-scale deployments</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/modules.html">Modules</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/mps.html">MPS backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/multiprocessing.html">Multiprocessing best practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/numerical_accuracy.html">Numerical accuracy</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/randomness.html">Reproducibility</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/serialization.html">Serialization semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/windows.html">Windows FAQ</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">torch.compile</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="dynamo/index.html">TorchDynamo Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo/installation.html">Installing TorchDynamo</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo/get-started.html">Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo/guards-overview.html">Guards Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo/custom-backends.html">Custom Backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo/deep-dive.html">TorchDynamo Deeper Dive</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo/troubleshooting.html">TorchDynamo Troubleshooting</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo/faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="ir.html">IRs</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Language Bindings</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="cpp_index.html">C++</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/javadoc/">Javadoc</a></li>
<li class="toctree-l1"><a class="reference internal" href="deploy.html">torch::deploy</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Python API</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="torch.html">torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.html">torch.nn</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.functional.html">torch.nn.functional</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensor_attributes.html">Tensor Attributes</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensor_view.html">Tensor Views</a></li>
<li class="toctree-l1"><a class="reference internal" href="amp.html">torch.amp</a></li>
<li class="toctree-l1"><a class="reference internal" href="autograd.html">torch.autograd</a></li>
<li class="toctree-l1"><a class="reference internal" href="library.html">torch.library</a></li>
<li class="toctree-l1"><a class="reference internal" href="cuda.html">torch.cuda</a></li>
<li class="toctree-l1"><a class="reference internal" href="mps.html">torch.mps</a></li>
<li class="toctree-l1"><a class="reference internal" href="backends.html">torch.backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.html">torch.distributed</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.algorithms.join.html">torch.distributed.algorithms.join</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.elastic.html">torch.distributed.elastic</a></li>
<li class="toctree-l1"><a class="reference internal" href="fsdp.html">torch.distributed.fsdp</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.optim.html">torch.distributed.optim</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">torch.distributed.tensor.parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.checkpoint.html">torch.distributed.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributions.html">torch.distributions</a></li>
<li class="toctree-l1"><a class="reference internal" href="_dynamo.html">torch._dynamo</a></li>
<li class="toctree-l1"><a class="reference internal" href="fft.html">torch.fft</a></li>
<li class="toctree-l1"><a class="reference internal" href="func.html">torch.func</a></li>
<li class="toctree-l1"><a class="reference internal" href="futures.html">torch.futures</a></li>
<li class="toctree-l1"><a class="reference internal" href="fx.html">torch.fx</a></li>
<li class="toctree-l1"><a class="reference internal" href="hub.html">torch.hub</a></li>
<li class="toctree-l1"><a class="reference internal" href="jit.html">torch.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="linalg.html">torch.linalg</a></li>
<li class="toctree-l1"><a class="reference internal" href="monitor.html">torch.monitor</a></li>
<li class="toctree-l1"><a class="reference internal" href="signal.html">torch.signal</a></li>
<li class="toctree-l1"><a class="reference internal" href="special.html">torch.special</a></li>
<li class="toctree-l1"><a class="reference internal" href="torch.overrides.html">torch.overrides</a></li>
<li class="toctree-l1"><a class="reference internal" href="package.html">torch.package</a></li>
<li class="toctree-l1"><a class="reference internal" href="profiler.html">torch.profiler</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.init.html">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="onnx.html">torch.onnx</a></li>
<li class="toctree-l1"><a class="reference internal" href="onnx_diagnostics.html">torch.onnx diagnostics</a></li>
<li class="toctree-l1"><a class="reference internal" href="optim.html">torch.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="complex_numbers.html">Complex Numbers</a></li>
<li class="toctree-l1"><a class="reference internal" href="ddp_comm_hooks.html">DDP Communication Hooks</a></li>
<li class="toctree-l1"><a class="reference internal" href="pipeline.html">Pipeline Parallelism</a></li>
<li class="toctree-l1"><a class="reference internal" href="quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="rpc.html">Distributed RPC Framework</a></li>
<li class="toctree-l1"><a class="reference internal" href="random.html">torch.random</a></li>
<li class="toctree-l1"><a class="reference internal" href="masked.html">torch.masked</a></li>
<li class="toctree-l1"><a class="reference internal" href="nested.html">torch.nested</a></li>
<li class="toctree-l1"><a class="reference internal" href="sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="testing.html">torch.testing</a></li>
<li class="toctree-l1"><a class="reference internal" href="benchmark_utils.html">torch.utils.benchmark</a></li>
<li class="toctree-l1"><a class="reference internal" href="bottleneck.html">torch.utils.bottleneck</a></li>
<li class="toctree-l1"><a class="reference internal" href="checkpoint.html">torch.utils.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="cpp_extension.html">torch.utils.cpp_extension</a></li>
<li class="toctree-l1"><a class="reference internal" href="data.html">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="jit_utils.html">torch.utils.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="dlpack.html">torch.utils.dlpack</a></li>
<li class="toctree-l1"><a class="reference internal" href="mobile_optimizer.html">torch.utils.mobile_optimizer</a></li>
<li class="toctree-l1"><a class="reference internal" href="model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensorboard.html">torch.utils.tensorboard</a></li>
<li class="toctree-l1"><a class="reference internal" href="type_info.html">Type Info</a></li>
<li class="toctree-l1"><a class="reference internal" href="named_tensor.html">Named Tensors</a></li>
<li class="toctree-l1"><a class="reference internal" href="name_inference.html">Named Tensors operator coverage</a></li>
<li class="toctree-l1"><a class="reference internal" href="config_mod.html">torch.__config__</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Libraries</span></p>
<ul>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/audio/stable">torchaudio</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/data">TorchData</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/torchrec">TorchRec</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/serve">TorchServe</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/text/stable">torchtext</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/vision/stable">torchvision</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/xla/">PyTorch on XLA Devices</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="index.html">
Docs
</a> >
</li>
<li>Tensor Parallelism - torch.distributed.tensor.parallel</li>
<li class="pytorch-breadcrumbs-aside">
<a href="_sources/distributed.tensor.parallel.rst.txt" rel="nofollow"><img src="_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="tensor-parallelism-torch-distributed-tensor-parallel">
<h1>Tensor Parallelism - torch.distributed.tensor.parallel<a class="headerlink" href="#tensor-parallelism-torch-distributed-tensor-parallel" title="Permalink to this heading">¶</a></h1>
<p>Tensor Parallelism(TP) is built on top of DistributedTensor(DTensor) and
provides several Parallelism styles: Rowwise, Colwise and Pairwise Parallelism.</p>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p>Tensor Parallelism APIs are experimental and subject to change.</p>
</div>
<p>The entrypoint to parallelize your <code class="docutils literal notranslate"><span class="pre">nn.Module</span></code> using Tensor Parallelism is:</p>
<span class="target" id="module-torch.distributed.tensor.parallel"></span><dl class="py function">
<dt class="sig sig-object py" id="torch.distributed.tensor.parallel.parallelize_module">
<span class="sig-prename descclassname"><span class="pre">torch.distributed.tensor.parallel.</span></span><span class="sig-name descname"><span class="pre">parallelize_module</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">module</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device_mesh</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">parallelize_plan</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tp_mesh_dim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/distributed/tensor/parallel/api.html#parallelize_module"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#torch.distributed.tensor.parallel.parallelize_module" title="Permalink to this definition">¶</a></dt>
<dd><p>The API to apply Tensor Parallelism (TP) in PyTorch. We parallelize module
or sub_modules based on a parallelize_plan. The parallelize_plan contains
<code class="xref py py-class docutils literal notranslate"><span class="pre">ParallelStyle</span></code>, which indicates how user wants the module or sub_module
to be parallelized.</p>
<p>User can also specify different parallel style per module fully qualifed name (FQN).
The API supports 2D parallelism natively by accepting an n-dimension device_mesh
and users just need to specify the dimension where we perform tensor parallelism on.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>module</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">nn.Module</span></code>) – Module to be parallelized.</p></li>
<li><p><strong>device_mesh</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code>) – Object which describes the mesh topology
of devices for the DTensor.</p></li>
<li><p><strong>parallelize_plan</strong> (Union[<code class="xref py py-class docutils literal notranslate"><span class="pre">ParallelStyle</span></code>, Dict[str, <code class="xref py py-class docutils literal notranslate"><span class="pre">ParallelStyle</span></code>]]) – The plan used to parallelize the module. It can be either a
<code class="xref py py-class docutils literal notranslate"><span class="pre">ParallelStyle</span></code> object which contains how
we prepare input/output for Tensor Parallelism or it can be a
dict of module FQN and its corresponding <code class="xref py py-class docutils literal notranslate"><span class="pre">ParallelStyle</span></code> object.</p></li>
<li><p><strong>tp_mesh_dim</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.11)"><em>int</em></a>) – The dimension of <code class="docutils literal notranslate"><span class="pre">device_mesh</span></code> where we perform
Tensor Parallelism on.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A <code class="xref py py-class docutils literal notranslate"><span class="pre">nn.Module</span></code> object parallelized.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><p id="torch.nn.Module"/><a class="reference internal" href="generated/torch.nn.Module.html#torch.nn.Module" title="torch.nn.modules.module.Module"><em>Module</em></a></p>
</dd>
</dl>
<dl>
<dt>Example::</dt><dd><div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">torch.distributed._tensor.parallel</span> <span class="kn">import</span> <span class="n">parallelize_module</span><span class="p">,</span> <span class="n">PairwiseParallel</span>
<span class="go">>>></span>
<span class="gp">>>> </span><span class="c1"># Define the module.</span>
<span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Model</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">parallelize_module</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">PairwiseParallel</span><span class="p">())</span>
<span class="go">>>></span>
</pre></div>
</div>
</dd>
</dl>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p><code class="docutils literal notranslate"><span class="pre">PairwiseParallel</span></code> comes with constraints for now. If you need finer
granularity, you need to pass in a dict of module FQN and parallel style instead.</p>
</div>
</dd></dl>
<p>Tensor Parallelism supports the following parallel styles:</p>
<dl class="py class">
<dt class="sig sig-object py" id="torch.distributed.tensor.parallel.style.RowwiseParallel">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">torch.distributed.tensor.parallel.style.</span></span><span class="sig-name descname"><span class="pre">RowwiseParallel</span></span><a class="reference internal" href="_modules/torch/distributed/tensor/parallel/style.html#RowwiseParallel"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#torch.distributed.tensor.parallel.style.RowwiseParallel" title="Permalink to this definition">¶</a></dt>
<dd><p>Partitioning the row of a module.
We assume the input to be a sharded <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code> and output to be a replicated <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code>.</p>
<dl class="field-list simple">
</dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="torch.distributed.tensor.parallel.style.ColwiseParallel">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">torch.distributed.tensor.parallel.style.</span></span><span class="sig-name descname"><span class="pre">ColwiseParallel</span></span><a class="reference internal" href="_modules/torch/distributed/tensor/parallel/style.html#ColwiseParallel"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#torch.distributed.tensor.parallel.style.ColwiseParallel" title="Permalink to this definition">¶</a></dt>
<dd><p>Partitioning the column of a tensor or module.
We assume the input to be a replicated <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code> and output to be a sharded <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code>.</p>
<dl class="field-list simple">
</dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="torch.distributed.tensor.parallel.style.PairwiseParallel">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">torch.distributed.tensor.parallel.style.</span></span><span class="sig-name descname"><span class="pre">PairwiseParallel</span></span><a class="reference internal" href="_modules/torch/distributed/tensor/parallel/style.html#PairwiseParallel"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#torch.distributed.tensor.parallel.style.PairwiseParallel" title="Permalink to this definition">¶</a></dt>
<dd><p>PairwiseParallel concatenate colwise and rowwise styles as a fixed
pair like what Megatron-LM(<a class="reference external" href="https://arxiv.org/abs/1909.08053">https://arxiv.org/abs/1909.08053</a>) is doing.
We assume both input and output needs to a replicate DTensor.</p>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p>PairwiseParallel only supports <code class="docutils literal notranslate"><span class="pre">nn.Multihead</span> <span class="pre">Attention</span></code>,
<code class="docutils literal notranslate"><span class="pre">nn.Transformer</span></code> or even-number-layer MLP for now.</p>
</div>
<dl class="field-list simple">
</dl>
</dd></dl>
<p>Since Tensor Parallelism is built on top of DTensor, we need to specify the
input and output placement of the module with DTensors so it can expectedly
interacts with the module before and after. The followings are functions
used for input/output preparation:</p>
<dl class="py function">
<dt class="sig sig-object py" id="torch.distributed.tensor.parallel.style.make_input_replicate_1d">
<span class="sig-prename descclassname"><span class="pre">torch.distributed.tensor.parallel.style.</span></span><span class="sig-name descname"><span class="pre">make_input_replicate_1d</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device_mesh</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/distributed/tensor/parallel/style.html#make_input_replicate_1d"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#torch.distributed.tensor.parallel.style.make_input_replicate_1d" title="Permalink to this definition">¶</a></dt>
<dd><p>Replicate input tensor over an 1-D device mesh. This function will be used in ParallelStyle.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>input</strong> (Union[<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.Tensor</span></code></a>, <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code>]) – This input tensor will be replicated over the 1-D <code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code>.</p></li>
<li><p><strong>device_mesh</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code>, optional) – The 1-D device mesh where <code class="docutils literal notranslate"><span class="pre">input</span></code> will be replicated.
If no <code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code> is passed and <code class="docutils literal notranslate"><span class="pre">input</span></code> is a <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code>,
<code class="docutils literal notranslate"><span class="pre">input.device_mesh</span></code> will be used.
If <code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code> is not 1-D, an exception will be thrown.
Default: <code class="docutils literal notranslate"><span class="pre">None</span></code></p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code> replicated over <code class="docutils literal notranslate"><span class="pre">device_mesh</span></code>.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><em>DTensor</em></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="torch.distributed.tensor.parallel.style.make_input_shard_1d">
<span class="sig-prename descclassname"><span class="pre">torch.distributed.tensor.parallel.style.</span></span><span class="sig-name descname"><span class="pre">make_input_shard_1d</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device_mesh</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/distributed/tensor/parallel/style.html#make_input_shard_1d"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#torch.distributed.tensor.parallel.style.make_input_shard_1d" title="Permalink to this definition">¶</a></dt>
<dd><p>Shard input tensor on <code class="docutils literal notranslate"><span class="pre">dim</span></code> over an 1-D device mesh. This function will be used in ParallelStyle.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>input</strong> (Union[<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.Tensor</span></code></a>, <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code>]) – Single tensor will be sharded on dimension <code class="docutils literal notranslate"><span class="pre">dim</span></code>
over the 1-D <code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code>.</p></li>
<li><p><strong>device_mesh</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code>, optional) – The 1-D device mesh where <code class="docutils literal notranslate"><span class="pre">input</span></code> will be sharded.
If no <code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code> is passed and <code class="docutils literal notranslate"><span class="pre">input</span></code> is a <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code>,
<cite>input.device_mesh</cite> will be used.
If <code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code> is not 1-D, an exception will be thrown.
Default: <code class="docutils literal notranslate"><span class="pre">None</span></code></p></li>
<li><p><strong>dim</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.11)"><em>int</em></a><em>, </em><em>optional</em>) – The sharding dimension of <code class="docutils literal notranslate"><span class="pre">input</span></code> tensor.
Default: 0</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code> sharded on dimension <code class="docutils literal notranslate"><span class="pre">dim</span></code> over <code class="docutils literal notranslate"><span class="pre">device_mesh</span></code>.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><em>DTensor</em></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="torch.distributed.tensor.parallel.style.make_input_shard_1d_last_dim">
<span class="sig-prename descclassname"><span class="pre">torch.distributed.tensor.parallel.style.</span></span><span class="sig-name descname"><span class="pre">make_input_shard_1d_last_dim</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device_mesh</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/distributed/tensor/parallel/style.html#make_input_shard_1d_last_dim"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#torch.distributed.tensor.parallel.style.make_input_shard_1d_last_dim" title="Permalink to this definition">¶</a></dt>
<dd><p>Wrapper func of <code class="docutils literal notranslate"><span class="pre">make_input_shard_1d</span></code> with <code class="docutils literal notranslate"><span class="pre">dim</span></code> = -1.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>input</strong> (Union[<a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.Tensor</span></code></a>, <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code>]) – This single tensor will be sharded on dimension <code class="docutils literal notranslate"><span class="pre">dim</span></code>
over the 1-D <code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code>.</p></li>
<li><p><strong>device_mesh</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code>, optional) – The 1-D device mesh where <code class="docutils literal notranslate"><span class="pre">input</span></code> will be sharded.
If no <code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code> is passed and <code class="docutils literal notranslate"><span class="pre">input</span></code> is a <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code>,
<cite>input.device_mesh</cite> will be used.
If <code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code> is not 1-D, an exception will be thrown.
Default: <code class="docutils literal notranslate"><span class="pre">None</span></code></p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code> sharded on dimension <code class="docutils literal notranslate"><span class="pre">dim</span></code> over <code class="docutils literal notranslate"><span class="pre">device_mesh</span></code>.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><em>DTensor</em></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="torch.distributed.tensor.parallel.style.make_output_replicate_1d">
<span class="sig-prename descclassname"><span class="pre">torch.distributed.tensor.parallel.style.</span></span><span class="sig-name descname"><span class="pre">make_output_replicate_1d</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">output</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device_mesh</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/distributed/tensor/parallel/style.html#make_output_replicate_1d"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#torch.distributed.tensor.parallel.style.make_output_replicate_1d" title="Permalink to this definition">¶</a></dt>
<dd><p>Convert Output DTensor to a replicated DTensor. This will be used in ParallelStyle.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>output</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code>) – Output of module to be converted.</p></li>
<li><p><strong>device_mesh</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code>, optional) – Object needed to replicate the output and it needs to be a 1D <code class="docutils literal notranslate"><span class="pre">device_mesh</span></code>
and we will throw exceptions if a non-1D <code class="docutils literal notranslate"><span class="pre">device_mesh</span></code> is passed in.
If no <code class="docutils literal notranslate"><span class="pre">device_mesh</span></code> is passed in, we will reuse the one from output.
Default: <code class="docutils literal notranslate"><span class="pre">None</span></code></p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code> object made replicate.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><em>DTensor</em></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="torch.distributed.tensor.parallel.style.make_output_tensor">
<span class="sig-prename descclassname"><span class="pre">torch.distributed.tensor.parallel.style.</span></span><span class="sig-name descname"><span class="pre">make_output_tensor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">output</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device_mesh</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/distributed/tensor/parallel/style.html#make_output_tensor"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#torch.distributed.tensor.parallel.style.make_output_tensor" title="Permalink to this definition">¶</a></dt>
<dd><p>Convert Output DTensor to a replicated DTensor first and then convert it to Tensor.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>output</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code>) – Output of module to be converted.</p></li>
<li><p><strong>device_mesh</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code>, optional) – Object which is needed to replicate the output and it needs to be
a 1D <code class="docutils literal notranslate"><span class="pre">device_mesh</span></code> and we will throw exceptions if a non-1D
<code class="docutils literal notranslate"><span class="pre">device_mesh</span></code> is passed in. If no <code class="docutils literal notranslate"><span class="pre">device_mesh</span></code> is passed in,
we will reuse the one from output.
Default: <code class="docutils literal notranslate"><span class="pre">None</span></code></p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A <a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.Tensor</span></code></a> object converted from output DTensor.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><em>Tensor</em></a></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="torch.distributed.tensor.parallel.style.make_output_shard_1d">
<span class="sig-prename descclassname"><span class="pre">torch.distributed.tensor.parallel.style.</span></span><span class="sig-name descname"><span class="pre">make_output_shard_1d</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">output</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device_mesh</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/distributed/tensor/parallel/style.html#make_output_shard_1d"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#torch.distributed.tensor.parallel.style.make_output_shard_1d" title="Permalink to this definition">¶</a></dt>
<dd><p>Convert Output DTensor to a sharded DTensor. This will be used in ParallelStyle.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>output</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code>) – Output of module to be converted.</p></li>
<li><p><strong>device_mesh</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">DeviceMesh</span></code>, optional) – Object needed to shard the output and it needs to be a 1D <code class="docutils literal notranslate"><span class="pre">device_mesh</span></code>
and we will throw exceptions if a non-1D <code class="docutils literal notranslate"><span class="pre">device_mesh</span></code> is passed in.
If no <code class="docutils literal notranslate"><span class="pre">device_mesh</span></code> is passed in, we will reuse the one from output.
Default: <code class="docutils literal notranslate"><span class="pre">None</span></code></p></li>
<li><p><strong>dim</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.11)"><em>int</em></a>) – Sharding dim for output. Default: 0</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A <code class="xref py py-class docutils literal notranslate"><span class="pre">DTensor</span></code> object sharded on the given dim.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p><em>DTensor</em></p>
</dd>
</dl>
</dd></dl>
<p>Currently, there are some constraints which makes it hard for the <cite>nn.MultiheadAttention</cite>
module to work out of box for Tensor Parallelism, so we built this multihead_attention
module for Tensor Parallelism users. Also, in <code class="docutils literal notranslate"><span class="pre">parallelize_module</span></code>, we automatically
swap <code class="docutils literal notranslate"><span class="pre">nn.MultiheadAttention</span></code> to this custom module when specifying <code class="docutils literal notranslate"><span class="pre">PairwiseParallel</span></code>.</p>
<dl class="py class">
<dt class="sig sig-object py" id="torch.distributed.tensor.parallel.multihead_attention_tp.TensorParallelMultiheadAttention">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">torch.distributed.tensor.parallel.multihead_attention_tp.</span></span><span class="sig-name descname"><span class="pre">TensorParallelMultiheadAttention</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">embed_dim</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">num_heads</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dropout</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bias</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">add_bias_kv</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">add_zero_attn</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">kdim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">vdim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_first</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dtype</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tp_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">self_attention</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/distributed/tensor/parallel/multihead_attention_tp.html#TensorParallelMultiheadAttention"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#torch.distributed.tensor.parallel.multihead_attention_tp.TensorParallelMultiheadAttention" title="Permalink to this definition">¶</a></dt>
<dd><p>Multi-head Attention block from Transformer models.
Since we need some customizations for the attention layer,
we are writing a customized but mathematically equivalent
attention module as defined in torch.nn.</p>
<p>Note that:
We now only support the case when it’s self attention with
limited input args and we also assume that the input tensor
has a dimension of three. Although we do implement the logic
for multihead attention, it was not fully tested.</p>
<dl class="field-list simple">
</dl>
</dd></dl>
<p>We also enabled 2D parallelism to integrate with <code class="docutils literal notranslate"><span class="pre">FullyShardedDataParallel</span></code>.
Users just need to call the following API explicitly:</p>
<dl class="py function">
<dt class="sig sig-object py" id="torch.distributed.tensor.parallel.fsdp.enable_2d_with_fsdp">
<span class="sig-prename descclassname"><span class="pre">torch.distributed.tensor.parallel.fsdp.</span></span><span class="sig-name descname"><span class="pre">enable_2d_with_fsdp</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/torch/distributed/tensor/parallel/fsdp.html#enable_2d_with_fsdp"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#torch.distributed.tensor.parallel.fsdp.enable_2d_with_fsdp" title="Permalink to this definition">¶</a></dt>
<dd><p>The API registers the extension which is needed for Tensor Parallelism (TP)
to work with FullyShardedDataParallel (FSDP). We first parallelize parameters
within one module or sub_modules based on a parallelize_plan and will let FSDP
reshard the local tensor of distributed parameter which is essentially a DTensor.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><p>A <cite>bool</cite> indicated whether extension registration succeeds or not.</p>
</dd>
<dt class="field-even">Return type<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.11)">bool</a></p>
</dd>
</dl>
</dd></dl>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="distributed.checkpoint.html" class="btn btn-neutral float-right" title="Distributed Checkpoint - torch.distributed.checkpoint" accesskey="n" rel="next">Next <img src="_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="distributed.optim.html" class="btn btn-neutral" title="Distributed Optimizers" accesskey="p" rel="prev"><img src="_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2023, PyTorch Contributors.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
<script>
var match = window.location.href.match(/\/_[a-zA-Z0-9_]*.html|_dynamo/gi);
var url = window.location.href.lastIndexOf(match[match.length-1]);
if (url)
{
var div = '<div class="admonition note"><p class="admonition-title">Note</p><p><i class="fa fa-exclamation-circle" aria-hidden="true"> </i> This page describes an internal API which is not intended to be used outside of the PyTorch codebase and can be modified or removed without notice.</p></div>'
document.getElementById("pytorch-article").insertAdjacentHTML('afterBegin', div)
}
</script>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Tensor Parallelism - torch.distributed.tensor.parallel</a></li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/clipboard.min.js"></script>
<script src="_static/copybutton.js"></script>
<script type="text/javascript" src="_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<script script type="text/javascript">
var collapsedSections = ['Developer Notes', 'Language Bindings', 'Libraries', 'Community'];
</script>
<img height="1" width="1" style="border-style:none;" alt="" src="https://www.googleadservices.com/pagead/conversion/795629140/?label=txkmCPmdtosBENSssfsC&guid=ON&script=0"/>
<!-- Begin Footer -->
<div class="container-fluid docs-tutorials-resources" id="docs-tutorials-resources">
<div class="container">
<div class="row">
<div class="col-md-4 text-center">
<h2>Docs</h2>
<p>Access comprehensive developer documentation for PyTorch</p>
<a class="with-right-arrow" href="https://pytorch.org/docs/stable/index.html">View Docs</a>
</div>
<div class="col-md-4 text-center">
<h2>Tutorials</h2>
<p>Get in-depth tutorials for beginners and advanced developers</p>
<a class="with-right-arrow" href="https://pytorch.org/tutorials">View Tutorials</a>
</div>
<div class="col-md-4 text-center">
<h2>Resources</h2>
<p>Find development resources and get your questions answered</p>
<a class="with-right-arrow" href="https://pytorch.org/resources">View Resources</a>
</div>
</div>
</div>
</div>
<footer class="site-footer">
<div class="container footer-container">
<div class="footer-logo-wrapper">
<a href="https://pytorch.org/" class="footer-logo"></a>
</div>
<div class="footer-links-wrapper">
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/">PyTorch</a></li>
<li><a href="https://pytorch.org/get-started">Get Started</a></li>
<li><a href="https://pytorch.org/features">Features</a></li>
<li><a href="https://pytorch.org/ecosystem">Ecosystem</a></li>
<li><a href="https://pytorch.org/blog/">Blog</a></li>
<li><a href="https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md">Contributing</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/resources">Resources</a></li>
<li><a href="https://pytorch.org/tutorials">Tutorials</a></li>
<li><a href="https://pytorch.org/docs/stable/index.html">Docs</a></li>
<li><a href="https://discuss.pytorch.org" target="_blank">Discuss</a></li>
<li><a href="https://github.com/pytorch/pytorch/issues" target="_blank">Github Issues</a></li>
<li><a href="https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf" target="_blank">Brand Guidelines</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title">Stay up to date</li>
<li><a href="https://www.facebook.com/pytorch" target="_blank">Facebook</a></li>
<li><a href="https://twitter.com/pytorch" target="_blank">Twitter</a></li>
<li><a href="https://www.youtube.com/pytorch" target="_blank">YouTube</a></li>
<li><a href="https://www.linkedin.com/company/pytorch" target="_blank">LinkedIn</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title">PyTorch Podcasts</li>
<li><a href="https://open.spotify.com/show/6UzHKeiy368jKfQMKKvJY5" target="_blank">Spotify</a></li>
<li><a href="https://podcasts.apple.com/us/podcast/pytorch-developer-podcast/id1566080008" target="_blank">Apple</a></li>
<li><a href="https://www.google.com/podcasts?feed=aHR0cHM6Ly9mZWVkcy5zaW1wbGVjYXN0LmNvbS9PQjVGa0lsOA%3D%3D" target="_blank">Google</a></li>
<li><a href="https://music.amazon.com/podcasts/7a4e6f0e-26c2-49e9-a478-41bd244197d0/PyTorch-Developer-Podcast?" target="_blank">Amazon</a></li>
</ul>
</div>
</div>
<div class="privacy-policy">
<ul>
<li class="privacy-policy-links"><a href="https://www.linuxfoundation.org/terms/" target="_blank">Terms</a></li>
<li class="privacy-policy-links">|</li>
<li class="privacy-policy-links"><a href="https://www.linuxfoundation.org/privacy-policy/" target="_blank">Privacy</a></li>
</ul>
</div>
<div class="copyright">
<p>© Copyright The Linux Foundation. The PyTorch Foundation is a project of The Linux Foundation.
For web site terms of use, trademark policy and other policies applicable to The PyTorch Foundation please see
<a href="www.linuxfoundation.org/policies/">www.linuxfoundation.org/policies/</a>. The PyTorch Foundation supports the PyTorch open source
project, which has been established as PyTorch Project a Series of LF Projects, LLC. For policies applicable to the PyTorch Project a Series of LF Projects, LLC,
please see <a href="www.lfprojects.org/policies/">www.lfprojects.org/policies/</a>.</p>
</div>
</div>
</footer>
<div class="cookie-banner-wrapper">
<div class="container">
<p class="gdpr-notice">To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: <a href="https://www.facebook.com/policies/cookies/">Cookies Policy</a>.</p>
<img class="close-button" src="_static/images/pytorch-x.svg">
</div>
</div>
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="resources-mobile-menu-title" class="active">
Docs
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/docs/stable/index.html">PyTorch</a>
</li>
<li>
<a href="https://pytorch.org/audio/stable/index.html">torchaudio</a>
</li>
<li>
<a href="https://pytorch.org/text/stable/index.html">torchtext</a>
</li>
<li>
<a href="https://pytorch.org/vision/stable/index.html">torchvision</a>
</li>
<li>
<a href="https://pytorch.org/torcharrow">torcharrow</a>