forked from pytorch/pytorch.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmasked.html
1382 lines (1185 loc) · 119 KB
/
masked.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>torch.masked — PyTorch 2.0 documentation</title>
<link rel="canonical" href="https://pytorch.org/docs/stable/masked.html"/>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/copybutton.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="_static/katex-math.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinx-dropdown.css" type="text/css" />
<link rel="stylesheet" href="_static/panels-bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="_static/css/jit.css" type="text/css" />
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="torch.nested" href="nested.html" />
<link rel="prev" title="torch.random" href="random.html" />
<!-- Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-117752657-2"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-117752657-2');
</script>
<!-- End Google Analytics -->
<script src="_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active docs-active">
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-orange-arrow">
Docs
</a>
<div class="resources-dropdown-menu">
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/docs/stable/index.html">
<span class="dropdown-title">PyTorch</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/audio/stable/index.html">
<span class="dropdown-title">torchaudio</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/text/stable/index.html">
<span class="dropdown-title">torchtext</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/vision/stable/index.html">
<span class="dropdown-title">torchvision</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torcharrow">
<span class="dropdown-title">torcharrow</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/data">
<span class="dropdown-title">TorchData</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchrec">
<span class="dropdown-title">TorchRec</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/serve/">
<span class="dropdown-title">TorchServe</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchx/">
<span class="dropdown-title">TorchX</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/xla">
<span class="dropdown-title">PyTorch on XLA Devices</span>
<p></p>
</a>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-arrow">
Resources
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/features">
<span class="dropdown-title">About</span>
<p>Learn about PyTorch’s features and capabilities</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/foundation">
<span class="dropdown-title">PyTorch Foundation</span>
<p>Learn about the PyTorch foundation</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/#community-module">
<span class="dropdown-title">Community</span>
<p>Join the PyTorch developer community to contribute, learn, and get your questions answered.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/community-stories">
<span class="dropdown-title">Community Stories</span>
<p>Learn how our community solves real, everyday machine learning problems with PyTorch.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/resources">
<span class="dropdown-title">Developer Resources</span>
<p>Find resources and get questions answered</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/events">
<span class="dropdown-title">Events</span>
<p>Find events, webinars, and podcasts</p>
</a>
<a class="nav-dropdown-item" href="https://discuss.pytorch.org/" target="_blank">
<span class="dropdown-title">Forums</span>
<p>A place to discuss PyTorch code, issues, install, research</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/hub">
<span class="dropdown-title">Models (Beta)</span>
<p>Discover, publish, and reuse pre-trained models</p>
</a>
</div>
</div>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
<a href='https://pytorch.org/docs/versions.html'>2.0 ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Community</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="community/build_ci_governance.html">PyTorch Governance | Build + CI</a></li>
<li class="toctree-l1"><a class="reference internal" href="community/contribution_guide.html">PyTorch Contribution Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="community/design.html">PyTorch Design Philosophy</a></li>
<li class="toctree-l1"><a class="reference internal" href="community/governance.html">PyTorch Governance | Mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="community/persons_of_interest.html">PyTorch Governance | Maintainers</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="notes/amp_examples.html">CUDA Automatic Mixed Precision examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/autograd.html">Autograd mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/broadcasting.html">Broadcasting semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/cpu_threading_torchscript_inference.html">CPU threading and TorchScript inference</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/cuda.html">CUDA semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/ddp.html">Distributed Data Parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/extending.html">Extending PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/extending.func.html">Extending torch.func with autograd.Function</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/gradcheck.html">Gradcheck mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/hip.html">HIP (ROCm) semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/large_scale_deployments.html">Features for large-scale deployments</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/modules.html">Modules</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/mps.html">MPS backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/multiprocessing.html">Multiprocessing best practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/numerical_accuracy.html">Numerical accuracy</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/randomness.html">Reproducibility</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/serialization.html">Serialization semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/windows.html">Windows FAQ</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">torch.compile</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="dynamo/index.html">TorchDynamo Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo/installation.html">Installing TorchDynamo</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo/get-started.html">Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo/guards-overview.html">Guards Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo/custom-backends.html">Custom Backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo/deep-dive.html">TorchDynamo Deeper Dive</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo/troubleshooting.html">TorchDynamo Troubleshooting</a></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo/faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="ir.html">IRs</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Language Bindings</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="cpp_index.html">C++</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/javadoc/">Javadoc</a></li>
<li class="toctree-l1"><a class="reference internal" href="deploy.html">torch::deploy</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Python API</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="torch.html">torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.html">torch.nn</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.functional.html">torch.nn.functional</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensor_attributes.html">Tensor Attributes</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensor_view.html">Tensor Views</a></li>
<li class="toctree-l1"><a class="reference internal" href="amp.html">torch.amp</a></li>
<li class="toctree-l1"><a class="reference internal" href="autograd.html">torch.autograd</a></li>
<li class="toctree-l1"><a class="reference internal" href="library.html">torch.library</a></li>
<li class="toctree-l1"><a class="reference internal" href="cuda.html">torch.cuda</a></li>
<li class="toctree-l1"><a class="reference internal" href="mps.html">torch.mps</a></li>
<li class="toctree-l1"><a class="reference internal" href="backends.html">torch.backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.html">torch.distributed</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.algorithms.join.html">torch.distributed.algorithms.join</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.elastic.html">torch.distributed.elastic</a></li>
<li class="toctree-l1"><a class="reference internal" href="fsdp.html">torch.distributed.fsdp</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.optim.html">torch.distributed.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.tensor.parallel.html">torch.distributed.tensor.parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributed.checkpoint.html">torch.distributed.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="distributions.html">torch.distributions</a></li>
<li class="toctree-l1"><a class="reference internal" href="_dynamo.html">torch._dynamo</a></li>
<li class="toctree-l1"><a class="reference internal" href="fft.html">torch.fft</a></li>
<li class="toctree-l1"><a class="reference internal" href="func.html">torch.func</a></li>
<li class="toctree-l1"><a class="reference internal" href="futures.html">torch.futures</a></li>
<li class="toctree-l1"><a class="reference internal" href="fx.html">torch.fx</a></li>
<li class="toctree-l1"><a class="reference internal" href="hub.html">torch.hub</a></li>
<li class="toctree-l1"><a class="reference internal" href="jit.html">torch.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="linalg.html">torch.linalg</a></li>
<li class="toctree-l1"><a class="reference internal" href="monitor.html">torch.monitor</a></li>
<li class="toctree-l1"><a class="reference internal" href="signal.html">torch.signal</a></li>
<li class="toctree-l1"><a class="reference internal" href="special.html">torch.special</a></li>
<li class="toctree-l1"><a class="reference internal" href="torch.overrides.html">torch.overrides</a></li>
<li class="toctree-l1"><a class="reference internal" href="package.html">torch.package</a></li>
<li class="toctree-l1"><a class="reference internal" href="profiler.html">torch.profiler</a></li>
<li class="toctree-l1"><a class="reference internal" href="nn.init.html">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="onnx.html">torch.onnx</a></li>
<li class="toctree-l1"><a class="reference internal" href="onnx_diagnostics.html">torch.onnx diagnostics</a></li>
<li class="toctree-l1"><a class="reference internal" href="optim.html">torch.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="complex_numbers.html">Complex Numbers</a></li>
<li class="toctree-l1"><a class="reference internal" href="ddp_comm_hooks.html">DDP Communication Hooks</a></li>
<li class="toctree-l1"><a class="reference internal" href="pipeline.html">Pipeline Parallelism</a></li>
<li class="toctree-l1"><a class="reference internal" href="quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="rpc.html">Distributed RPC Framework</a></li>
<li class="toctree-l1"><a class="reference internal" href="random.html">torch.random</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">torch.masked</a></li>
<li class="toctree-l1"><a class="reference internal" href="nested.html">torch.nested</a></li>
<li class="toctree-l1"><a class="reference internal" href="sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="testing.html">torch.testing</a></li>
<li class="toctree-l1"><a class="reference internal" href="benchmark_utils.html">torch.utils.benchmark</a></li>
<li class="toctree-l1"><a class="reference internal" href="bottleneck.html">torch.utils.bottleneck</a></li>
<li class="toctree-l1"><a class="reference internal" href="checkpoint.html">torch.utils.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="cpp_extension.html">torch.utils.cpp_extension</a></li>
<li class="toctree-l1"><a class="reference internal" href="data.html">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="jit_utils.html">torch.utils.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="dlpack.html">torch.utils.dlpack</a></li>
<li class="toctree-l1"><a class="reference internal" href="mobile_optimizer.html">torch.utils.mobile_optimizer</a></li>
<li class="toctree-l1"><a class="reference internal" href="model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1"><a class="reference internal" href="tensorboard.html">torch.utils.tensorboard</a></li>
<li class="toctree-l1"><a class="reference internal" href="type_info.html">Type Info</a></li>
<li class="toctree-l1"><a class="reference internal" href="named_tensor.html">Named Tensors</a></li>
<li class="toctree-l1"><a class="reference internal" href="name_inference.html">Named Tensors operator coverage</a></li>
<li class="toctree-l1"><a class="reference internal" href="config_mod.html">torch.__config__</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Libraries</span></p>
<ul>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/audio/stable">torchaudio</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/data">TorchData</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/torchrec">TorchRec</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/serve">TorchServe</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/text/stable">torchtext</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/vision/stable">torchvision</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/xla/">PyTorch on XLA Devices</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="index.html">
Docs
</a> >
</li>
<li>torch.masked</li>
<li class="pytorch-breadcrumbs-aside">
<a href="_sources/masked.rst.txt" rel="nofollow"><img src="_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<span class="target" id="module-torch.masked"></span><span class="target" id="module-torch.masked.maskedtensor"></span><section id="torch-masked">
<span id="masked-docs"></span><h1>torch.masked<a class="headerlink" href="#torch-masked" title="Permalink to this heading">¶</a></h1>
<section id="introduction">
<h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this heading">¶</a></h2>
<section id="motivation">
<h3>Motivation<a class="headerlink" href="#motivation" title="Permalink to this heading">¶</a></h3>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p>The PyTorch API of masked tensors is in the prototype stage and may or may not change in the future.</p>
</div>
<p>MaskedTensor serves as an extension to <a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.Tensor</span></code></a> that provides the user with the ability to:</p>
<ul class="simple">
<li><p>use any masked semantics (e.g. variable length tensors, nan* operators, etc.)</p></li>
<li><p>differentiate between 0 and NaN gradients</p></li>
<li><p>various sparse applications (see tutorial below)</p></li>
</ul>
<p>“Specified” and “unspecified” have a long history in PyTorch without formal semantics and certainly without
consistency; indeed, MaskedTensor was born out of a build up of issues that the vanilla <a class="reference internal" href="tensors.html#torch.Tensor" title="torch.Tensor"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.Tensor</span></code></a>
class could not properly address. Thus, a primary goal of MaskedTensor is to become the source of truth for
said “specified” and “unspecified” values in PyTorch where they are a first class citizen instead of an afterthought.
In turn, this should further unlock <a class="reference external" href="https://pytorch.org/docs/stable/sparse.html">sparsity’s</a> potential,
enable safer and more consistent operators, and provide a smoother and more intuitive experience
for users and developers alike.</p>
</section>
<section id="what-is-a-maskedtensor">
<h3>What is a MaskedTensor?<a class="headerlink" href="#what-is-a-maskedtensor" title="Permalink to this heading">¶</a></h3>
<p>A MaskedTensor is a tensor subclass that consists of 1) an input (data), and 2) a mask. The mask tells us
which entries from the input should be included or ignored.</p>
<p>By way of example, suppose that we wanted to mask out all values that are equal to 0 (represented by the gray)
and take the max:</p>
<a class="reference internal image-reference" href="_images/tensor_comparison.jpg"><img alt="_images/tensor_comparison.jpg" src="_images/tensor_comparison.jpg" style="width: 762.0px; height: 540.0px;" /></a>
<p>On top is the vanilla tensor example while the bottom is MaskedTensor where all the 0’s are masked out.
This clearly yields a different result depending on whether we have the mask, but this flexible structure
allows the user to systematically ignore any elements they’d like during computation.</p>
<p>There are already a number of existing tutorials that we’ve written to help users onboard, such as:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://pytorch.org/tutorials/prototype/maskedtensor_overview">Overview - the place to start for new users, discusses how to use MaskedTensors and why they’re useful</a></p></li>
<li><p><a class="reference external" href="https://pytorch.org/tutorials/prototype/maskedtensor_sparsity">Sparsity - MaskedTensor supports sparse COO and CSR data and mask Tensors</a></p></li>
<li><p><a class="reference external" href="https://pytorch.org/tutorials/prototype/maskedtensor_adagrad">Adagrad sparse semantics - a practical example of how MaskedTensor can simplify sparse semantics and implementations</a></p></li>
<li><p><a class="reference external" href="https://pytorch.org/tutorials/prototype/maskedtensor_advanced_semantics">Advanced semantics - discussion on why certain decisions were made (e.g. requiring masks to match for binary/reduction operations),
differences with NumPy’s MaskedArray, and reduction semantics</a></p></li>
</ul>
</section>
</section>
<section id="supported-operators">
<h2>Supported Operators<a class="headerlink" href="#supported-operators" title="Permalink to this heading">¶</a></h2>
<section id="unary-operators">
<h3>Unary Operators<a class="headerlink" href="#unary-operators" title="Permalink to this heading">¶</a></h3>
<p>Unary operators are operators that only contain only a single input.
Applying them to MaskedTensors is relatively straightforward: if the data is masked out at a given index,
we apply the operator, otherwise we’ll continue to mask out the data.</p>
<p>The available unary operators are:</p>
<table class="autosummary longtable docutils align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.abs"/><a class="reference internal" href="generated/torch.abs.html#torch.abs" title="torch.abs"><code class="xref py py-obj docutils literal notranslate"><span class="pre">abs</span></code></a></p></td>
<td><p>Computes the absolute value of each element in <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.absolute"/><a class="reference internal" href="generated/torch.absolute.html#torch.absolute" title="torch.absolute"><code class="xref py py-obj docutils literal notranslate"><span class="pre">absolute</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.abs.html#torch.abs" title="torch.abs"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.abs()</span></code></a></p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.acos"/><a class="reference internal" href="generated/torch.acos.html#torch.acos" title="torch.acos"><code class="xref py py-obj docutils literal notranslate"><span class="pre">acos</span></code></a></p></td>
<td><p>Computes the inverse cosine of each element in <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.arccos"/><a class="reference internal" href="generated/torch.arccos.html#torch.arccos" title="torch.arccos"><code class="xref py py-obj docutils literal notranslate"><span class="pre">arccos</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.acos.html#torch.acos" title="torch.acos"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.acos()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.acosh"/><a class="reference internal" href="generated/torch.acosh.html#torch.acosh" title="torch.acosh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">acosh</span></code></a></p></td>
<td><p>Returns a new tensor with the inverse hyperbolic cosine of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.arccosh"/><a class="reference internal" href="generated/torch.arccosh.html#torch.arccosh" title="torch.arccosh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">arccosh</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.acosh.html#torch.acosh" title="torch.acosh"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.acosh()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.angle"/><a class="reference internal" href="generated/torch.angle.html#torch.angle" title="torch.angle"><code class="xref py py-obj docutils literal notranslate"><span class="pre">angle</span></code></a></p></td>
<td><p>Computes the element-wise angle (in radians) of the given <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.asin"/><a class="reference internal" href="generated/torch.asin.html#torch.asin" title="torch.asin"><code class="xref py py-obj docutils literal notranslate"><span class="pre">asin</span></code></a></p></td>
<td><p>Returns a new tensor with the arcsine of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.arcsin"/><a class="reference internal" href="generated/torch.arcsin.html#torch.arcsin" title="torch.arcsin"><code class="xref py py-obj docutils literal notranslate"><span class="pre">arcsin</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.asin.html#torch.asin" title="torch.asin"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.asin()</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.asinh"/><a class="reference internal" href="generated/torch.asinh.html#torch.asinh" title="torch.asinh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">asinh</span></code></a></p></td>
<td><p>Returns a new tensor with the inverse hyperbolic sine of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.arcsinh"/><a class="reference internal" href="generated/torch.arcsinh.html#torch.arcsinh" title="torch.arcsinh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">arcsinh</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.asinh.html#torch.asinh" title="torch.asinh"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.asinh()</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.atan"/><a class="reference internal" href="generated/torch.atan.html#torch.atan" title="torch.atan"><code class="xref py py-obj docutils literal notranslate"><span class="pre">atan</span></code></a></p></td>
<td><p>Returns a new tensor with the arctangent of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.arctan"/><a class="reference internal" href="generated/torch.arctan.html#torch.arctan" title="torch.arctan"><code class="xref py py-obj docutils literal notranslate"><span class="pre">arctan</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.atan.html#torch.atan" title="torch.atan"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.atan()</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.atanh"/><a class="reference internal" href="generated/torch.atanh.html#torch.atanh" title="torch.atanh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">atanh</span></code></a></p></td>
<td><p>Returns a new tensor with the inverse hyperbolic tangent of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.arctanh"/><a class="reference internal" href="generated/torch.arctanh.html#torch.arctanh" title="torch.arctanh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">arctanh</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.atanh.html#torch.atanh" title="torch.atanh"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.atanh()</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.bitwise_not"/><a class="reference internal" href="generated/torch.bitwise_not.html#torch.bitwise_not" title="torch.bitwise_not"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bitwise_not</span></code></a></p></td>
<td><p>Computes the bitwise NOT of the given input tensor.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.ceil"/><a class="reference internal" href="generated/torch.ceil.html#torch.ceil" title="torch.ceil"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ceil</span></code></a></p></td>
<td><p>Returns a new tensor with the ceil of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>, the smallest integer greater than or equal to each element.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.clamp"/><a class="reference internal" href="generated/torch.clamp.html#torch.clamp" title="torch.clamp"><code class="xref py py-obj docutils literal notranslate"><span class="pre">clamp</span></code></a></p></td>
<td><p>Clamps all elements in <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> into the range <cite>[</cite> <a class="reference internal" href="generated/torch.min.html#torch.min" title="torch.min"><code class="xref py py-attr docutils literal notranslate"><span class="pre">min</span></code></a>, <a class="reference internal" href="generated/torch.max.html#torch.max" title="torch.max"><code class="xref py py-attr docutils literal notranslate"><span class="pre">max</span></code></a> <cite>]</cite>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.clip"/><a class="reference internal" href="generated/torch.clip.html#torch.clip" title="torch.clip"><code class="xref py py-obj docutils literal notranslate"><span class="pre">clip</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.clamp.html#torch.clamp" title="torch.clamp"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.clamp()</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.conj_physical"/><a class="reference internal" href="generated/torch.conj_physical.html#torch.conj_physical" title="torch.conj_physical"><code class="xref py py-obj docutils literal notranslate"><span class="pre">conj_physical</span></code></a></p></td>
<td><p>Computes the element-wise conjugate of the given <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.cos"/><a class="reference internal" href="generated/torch.cos.html#torch.cos" title="torch.cos"><code class="xref py py-obj docutils literal notranslate"><span class="pre">cos</span></code></a></p></td>
<td><p>Returns a new tensor with the cosine of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.cosh"/><a class="reference internal" href="generated/torch.cosh.html#torch.cosh" title="torch.cosh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">cosh</span></code></a></p></td>
<td><p>Returns a new tensor with the hyperbolic cosine of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.deg2rad"/><a class="reference internal" href="generated/torch.deg2rad.html#torch.deg2rad" title="torch.deg2rad"><code class="xref py py-obj docutils literal notranslate"><span class="pre">deg2rad</span></code></a></p></td>
<td><p>Returns a new tensor with each of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> converted from angles in degrees to radians.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.digamma"/><a class="reference internal" href="generated/torch.digamma.html#torch.digamma" title="torch.digamma"><code class="xref py py-obj docutils literal notranslate"><span class="pre">digamma</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="special.html#torch.special.digamma" title="torch.special.digamma"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.special.digamma()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.erf"/><a class="reference internal" href="generated/torch.erf.html#torch.erf" title="torch.erf"><code class="xref py py-obj docutils literal notranslate"><span class="pre">erf</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="special.html#torch.special.erf" title="torch.special.erf"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.special.erf()</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.erfc"/><a class="reference internal" href="generated/torch.erfc.html#torch.erfc" title="torch.erfc"><code class="xref py py-obj docutils literal notranslate"><span class="pre">erfc</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="special.html#torch.special.erfc" title="torch.special.erfc"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.special.erfc()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.erfinv"/><a class="reference internal" href="generated/torch.erfinv.html#torch.erfinv" title="torch.erfinv"><code class="xref py py-obj docutils literal notranslate"><span class="pre">erfinv</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="special.html#torch.special.erfinv" title="torch.special.erfinv"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.special.erfinv()</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.exp"/><a class="reference internal" href="generated/torch.exp.html#torch.exp" title="torch.exp"><code class="xref py py-obj docutils literal notranslate"><span class="pre">exp</span></code></a></p></td>
<td><p>Returns a new tensor with the exponential of the elements of the input tensor <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.exp2"/><a class="reference internal" href="generated/torch.exp2.html#torch.exp2" title="torch.exp2"><code class="xref py py-obj docutils literal notranslate"><span class="pre">exp2</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="special.html#torch.special.exp2" title="torch.special.exp2"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.special.exp2()</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.expm1"/><a class="reference internal" href="generated/torch.expm1.html#torch.expm1" title="torch.expm1"><code class="xref py py-obj docutils literal notranslate"><span class="pre">expm1</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="special.html#torch.special.expm1" title="torch.special.expm1"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.special.expm1()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.fix"/><a class="reference internal" href="generated/torch.fix.html#torch.fix" title="torch.fix"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fix</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.trunc.html#torch.trunc" title="torch.trunc"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.trunc()</span></code></a></p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.floor"/><a class="reference internal" href="generated/torch.floor.html#torch.floor" title="torch.floor"><code class="xref py py-obj docutils literal notranslate"><span class="pre">floor</span></code></a></p></td>
<td><p>Returns a new tensor with the floor of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>, the largest integer less than or equal to each element.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.frac"/><a class="reference internal" href="generated/torch.frac.html#torch.frac" title="torch.frac"><code class="xref py py-obj docutils literal notranslate"><span class="pre">frac</span></code></a></p></td>
<td><p>Computes the fractional portion of each element in <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.lgamma"/><a class="reference internal" href="generated/torch.lgamma.html#torch.lgamma" title="torch.lgamma"><code class="xref py py-obj docutils literal notranslate"><span class="pre">lgamma</span></code></a></p></td>
<td><p>Computes the natural logarithm of the absolute value of the gamma function on <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.log"/><a class="reference internal" href="generated/torch.log.html#torch.log" title="torch.log"><code class="xref py py-obj docutils literal notranslate"><span class="pre">log</span></code></a></p></td>
<td><p>Returns a new tensor with the natural logarithm of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.log10"/><a class="reference internal" href="generated/torch.log10.html#torch.log10" title="torch.log10"><code class="xref py py-obj docutils literal notranslate"><span class="pre">log10</span></code></a></p></td>
<td><p>Returns a new tensor with the logarithm to the base 10 of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.log1p"/><a class="reference internal" href="generated/torch.log1p.html#torch.log1p" title="torch.log1p"><code class="xref py py-obj docutils literal notranslate"><span class="pre">log1p</span></code></a></p></td>
<td><p>Returns a new tensor with the natural logarithm of (1 + <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>).</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.log2"/><a class="reference internal" href="generated/torch.log2.html#torch.log2" title="torch.log2"><code class="xref py py-obj docutils literal notranslate"><span class="pre">log2</span></code></a></p></td>
<td><p>Returns a new tensor with the logarithm to the base 2 of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.logit"/><a class="reference internal" href="generated/torch.logit.html#torch.logit" title="torch.logit"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logit</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="special.html#torch.special.logit" title="torch.special.logit"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.special.logit()</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.i0"/><a class="reference internal" href="generated/torch.i0.html#torch.i0" title="torch.i0"><code class="xref py py-obj docutils literal notranslate"><span class="pre">i0</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="special.html#torch.special.i0" title="torch.special.i0"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.special.i0()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.isnan"/><a class="reference internal" href="generated/torch.isnan.html#torch.isnan" title="torch.isnan"><code class="xref py py-obj docutils literal notranslate"><span class="pre">isnan</span></code></a></p></td>
<td><p>Returns a new tensor with boolean elements representing if each element of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> is NaN or not.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.nan_to_num"/><a class="reference internal" href="generated/torch.nan_to_num.html#torch.nan_to_num" title="torch.nan_to_num"><code class="xref py py-obj docutils literal notranslate"><span class="pre">nan_to_num</span></code></a></p></td>
<td><p>Replaces <code class="docutils literal notranslate"><span class="pre">NaN</span></code>, positive infinity, and negative infinity values in <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> with the values specified by <code class="xref py py-attr docutils literal notranslate"><span class="pre">nan</span></code>, <code class="xref py py-attr docutils literal notranslate"><span class="pre">posinf</span></code>, and <code class="xref py py-attr docutils literal notranslate"><span class="pre">neginf</span></code>, respectively.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.neg"/><a class="reference internal" href="generated/torch.neg.html#torch.neg" title="torch.neg"><code class="xref py py-obj docutils literal notranslate"><span class="pre">neg</span></code></a></p></td>
<td><p>Returns a new tensor with the negative of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.negative"/><a class="reference internal" href="generated/torch.negative.html#torch.negative" title="torch.negative"><code class="xref py py-obj docutils literal notranslate"><span class="pre">negative</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.neg.html#torch.neg" title="torch.neg"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.neg()</span></code></a></p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.positive"/><a class="reference internal" href="generated/torch.positive.html#torch.positive" title="torch.positive"><code class="xref py py-obj docutils literal notranslate"><span class="pre">positive</span></code></a></p></td>
<td><p>Returns <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.pow"/><a class="reference internal" href="generated/torch.pow.html#torch.pow" title="torch.pow"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pow</span></code></a></p></td>
<td><p>Takes the power of each element in <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> with <code class="xref py py-attr docutils literal notranslate"><span class="pre">exponent</span></code> and returns a tensor with the result.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.rad2deg"/><a class="reference internal" href="generated/torch.rad2deg.html#torch.rad2deg" title="torch.rad2deg"><code class="xref py py-obj docutils literal notranslate"><span class="pre">rad2deg</span></code></a></p></td>
<td><p>Returns a new tensor with each of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> converted from angles in radians to degrees.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.reciprocal"/><a class="reference internal" href="generated/torch.reciprocal.html#torch.reciprocal" title="torch.reciprocal"><code class="xref py py-obj docutils literal notranslate"><span class="pre">reciprocal</span></code></a></p></td>
<td><p>Returns a new tensor with the reciprocal of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code></p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.round"/><a class="reference internal" href="generated/torch.round.html#torch.round" title="torch.round"><code class="xref py py-obj docutils literal notranslate"><span class="pre">round</span></code></a></p></td>
<td><p>Rounds elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> to the nearest integer.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.rsqrt"/><a class="reference internal" href="generated/torch.rsqrt.html#torch.rsqrt" title="torch.rsqrt"><code class="xref py py-obj docutils literal notranslate"><span class="pre">rsqrt</span></code></a></p></td>
<td><p>Returns a new tensor with the reciprocal of the square-root of each of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.sigmoid"/><a class="reference internal" href="generated/torch.sigmoid.html#torch.sigmoid" title="torch.sigmoid"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sigmoid</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="special.html#torch.special.expit" title="torch.special.expit"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.special.expit()</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.sign"/><a class="reference internal" href="generated/torch.sign.html#torch.sign" title="torch.sign"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sign</span></code></a></p></td>
<td><p>Returns a new tensor with the signs of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.sgn"/><a class="reference internal" href="generated/torch.sgn.html#torch.sgn" title="torch.sgn"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sgn</span></code></a></p></td>
<td><p>This function is an extension of torch.sign() to complex tensors.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.signbit"/><a class="reference internal" href="generated/torch.signbit.html#torch.signbit" title="torch.signbit"><code class="xref py py-obj docutils literal notranslate"><span class="pre">signbit</span></code></a></p></td>
<td><p>Tests if each element of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> has its sign bit set or not.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.sin"/><a class="reference internal" href="generated/torch.sin.html#torch.sin" title="torch.sin"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sin</span></code></a></p></td>
<td><p>Returns a new tensor with the sine of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.sinc"/><a class="reference internal" href="generated/torch.sinc.html#torch.sinc" title="torch.sinc"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sinc</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="special.html#torch.special.sinc" title="torch.special.sinc"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.special.sinc()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.sinh"/><a class="reference internal" href="generated/torch.sinh.html#torch.sinh" title="torch.sinh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sinh</span></code></a></p></td>
<td><p>Returns a new tensor with the hyperbolic sine of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.sqrt"/><a class="reference internal" href="generated/torch.sqrt.html#torch.sqrt" title="torch.sqrt"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sqrt</span></code></a></p></td>
<td><p>Returns a new tensor with the square-root of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.square"/><a class="reference internal" href="generated/torch.square.html#torch.square" title="torch.square"><code class="xref py py-obj docutils literal notranslate"><span class="pre">square</span></code></a></p></td>
<td><p>Returns a new tensor with the square of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.tan"/><a class="reference internal" href="generated/torch.tan.html#torch.tan" title="torch.tan"><code class="xref py py-obj docutils literal notranslate"><span class="pre">tan</span></code></a></p></td>
<td><p>Returns a new tensor with the tangent of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.tanh"/><a class="reference internal" href="generated/torch.tanh.html#torch.tanh" title="torch.tanh"><code class="xref py py-obj docutils literal notranslate"><span class="pre">tanh</span></code></a></p></td>
<td><p>Returns a new tensor with the hyperbolic tangent of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.trunc"/><a class="reference internal" href="generated/torch.trunc.html#torch.trunc" title="torch.trunc"><code class="xref py py-obj docutils literal notranslate"><span class="pre">trunc</span></code></a></p></td>
<td><p>Returns a new tensor with the truncated integer values of the elements of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
</tbody>
</table>
<p>The available inplace unary operators are all of the above <strong>except</strong>:</p>
<table class="autosummary longtable docutils align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.angle"/><a class="reference internal" href="generated/torch.angle.html#torch.angle" title="torch.angle"><code class="xref py py-obj docutils literal notranslate"><span class="pre">angle</span></code></a></p></td>
<td><p>Computes the element-wise angle (in radians) of the given <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.positive"/><a class="reference internal" href="generated/torch.positive.html#torch.positive" title="torch.positive"><code class="xref py py-obj docutils literal notranslate"><span class="pre">positive</span></code></a></p></td>
<td><p>Returns <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.signbit"/><a class="reference internal" href="generated/torch.signbit.html#torch.signbit" title="torch.signbit"><code class="xref py py-obj docutils literal notranslate"><span class="pre">signbit</span></code></a></p></td>
<td><p>Tests if each element of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> has its sign bit set or not.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.isnan"/><a class="reference internal" href="generated/torch.isnan.html#torch.isnan" title="torch.isnan"><code class="xref py py-obj docutils literal notranslate"><span class="pre">isnan</span></code></a></p></td>
<td><p>Returns a new tensor with boolean elements representing if each element of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> is NaN or not.</p></td>
</tr>
</tbody>
</table>
</section>
<section id="binary-operators">
<h3>Binary Operators<a class="headerlink" href="#binary-operators" title="Permalink to this heading">¶</a></h3>
<p>As you may have seen in the tutorial, <code class="xref py py-class docutils literal notranslate"><span class="pre">MaskedTensor</span></code> also has binary operations implemented with the caveat
that the masks in the two MaskedTensors must match or else an error will be raised. As noted in the error, if you
need support for a particular operator or have proposed semantics for how they should behave instead, please open
an issue on GitHub. For now, we have decided to go with the most conservative implementation to ensure that users
know exactly what is going on and are being intentional about their decisions with masked semantics.</p>
<p>The available binary operators are:</p>
<table class="autosummary longtable docutils align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.add"/><a class="reference internal" href="generated/torch.add.html#torch.add" title="torch.add"><code class="xref py py-obj docutils literal notranslate"><span class="pre">add</span></code></a></p></td>
<td><p>Adds <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>, scaled by <code class="xref py py-attr docutils literal notranslate"><span class="pre">alpha</span></code>, to <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.atan2"/><a class="reference internal" href="generated/torch.atan2.html#torch.atan2" title="torch.atan2"><code class="xref py py-obj docutils literal notranslate"><span class="pre">atan2</span></code></a></p></td>
<td><p>Element-wise arctangent of <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mtext>input</mtext><mi>i</mi></msub><mi mathvariant="normal">/</mi><msub><mtext>other</mtext><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\text{input}_{i} / \text{other}_{i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord text"><span class="mord">input</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2175em;"><span style="top:-2.4559em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord"><span class="mord text"><span class="mord">other</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span> with consideration of the quadrant.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.arctan2"/><a class="reference internal" href="generated/torch.arctan2.html#torch.arctan2" title="torch.arctan2"><code class="xref py py-obj docutils literal notranslate"><span class="pre">arctan2</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.atan2.html#torch.atan2" title="torch.atan2"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.atan2()</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.bitwise_and"/><a class="reference internal" href="generated/torch.bitwise_and.html#torch.bitwise_and" title="torch.bitwise_and"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bitwise_and</span></code></a></p></td>
<td><p>Computes the bitwise AND of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.bitwise_or"/><a class="reference internal" href="generated/torch.bitwise_or.html#torch.bitwise_or" title="torch.bitwise_or"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bitwise_or</span></code></a></p></td>
<td><p>Computes the bitwise OR of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.bitwise_xor"/><a class="reference internal" href="generated/torch.bitwise_xor.html#torch.bitwise_xor" title="torch.bitwise_xor"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bitwise_xor</span></code></a></p></td>
<td><p>Computes the bitwise XOR of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.bitwise_left_shift"/><a class="reference internal" href="generated/torch.bitwise_left_shift.html#torch.bitwise_left_shift" title="torch.bitwise_left_shift"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bitwise_left_shift</span></code></a></p></td>
<td><p>Computes the left arithmetic shift of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> by <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code> bits.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.bitwise_right_shift"/><a class="reference internal" href="generated/torch.bitwise_right_shift.html#torch.bitwise_right_shift" title="torch.bitwise_right_shift"><code class="xref py py-obj docutils literal notranslate"><span class="pre">bitwise_right_shift</span></code></a></p></td>
<td><p>Computes the right arithmetic shift of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> by <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code> bits.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.div"/><a class="reference internal" href="generated/torch.div.html#torch.div" title="torch.div"><code class="xref py py-obj docutils literal notranslate"><span class="pre">div</span></code></a></p></td>
<td><p>Divides each element of the input <code class="docutils literal notranslate"><span class="pre">input</span></code> by the corresponding element of <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.divide"/><a class="reference internal" href="generated/torch.divide.html#torch.divide" title="torch.divide"><code class="xref py py-obj docutils literal notranslate"><span class="pre">divide</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.div.html#torch.div" title="torch.div"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.div()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.floor_divide"/><a class="reference internal" href="generated/torch.floor_divide.html#torch.floor_divide" title="torch.floor_divide"><code class="xref py py-obj docutils literal notranslate"><span class="pre">floor_divide</span></code></a></p></td>
<td><p></p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.fmod"/><a class="reference internal" href="generated/torch.fmod.html#torch.fmod" title="torch.fmod"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fmod</span></code></a></p></td>
<td><p>Applies C++'s <a class="reference external" href="https://en.cppreference.com/w/cpp/numeric/math/fmod">std::fmod</a> entrywise.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.logaddexp"/><a class="reference internal" href="generated/torch.logaddexp.html#torch.logaddexp" title="torch.logaddexp"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logaddexp</span></code></a></p></td>
<td><p>Logarithm of the sum of exponentiations of the inputs.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.logaddexp2"/><a class="reference internal" href="generated/torch.logaddexp2.html#torch.logaddexp2" title="torch.logaddexp2"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logaddexp2</span></code></a></p></td>
<td><p>Logarithm of the sum of exponentiations of the inputs in base-2.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.mul"/><a class="reference internal" href="generated/torch.mul.html#torch.mul" title="torch.mul"><code class="xref py py-obj docutils literal notranslate"><span class="pre">mul</span></code></a></p></td>
<td><p>Multiplies <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> by <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.multiply"/><a class="reference internal" href="generated/torch.multiply.html#torch.multiply" title="torch.multiply"><code class="xref py py-obj docutils literal notranslate"><span class="pre">multiply</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.mul.html#torch.mul" title="torch.mul"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.mul()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.nextafter"/><a class="reference internal" href="generated/torch.nextafter.html#torch.nextafter" title="torch.nextafter"><code class="xref py py-obj docutils literal notranslate"><span class="pre">nextafter</span></code></a></p></td>
<td><p>Return the next floating-point value after <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> towards <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>, elementwise.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.remainder"/><a class="reference internal" href="generated/torch.remainder.html#torch.remainder" title="torch.remainder"><code class="xref py py-obj docutils literal notranslate"><span class="pre">remainder</span></code></a></p></td>
<td><p>Computes <a class="reference external" href="https://docs.python.org/3/reference/expressions.html#binary-arithmetic-operations">Python's modulus operation</a> entrywise.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.sub"/><a class="reference internal" href="generated/torch.sub.html#torch.sub" title="torch.sub"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sub</span></code></a></p></td>
<td><p>Subtracts <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>, scaled by <code class="xref py py-attr docutils literal notranslate"><span class="pre">alpha</span></code>, from <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.subtract"/><a class="reference internal" href="generated/torch.subtract.html#torch.subtract" title="torch.subtract"><code class="xref py py-obj docutils literal notranslate"><span class="pre">subtract</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.sub.html#torch.sub" title="torch.sub"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.sub()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.true_divide"/><a class="reference internal" href="generated/torch.true_divide.html#torch.true_divide" title="torch.true_divide"><code class="xref py py-obj docutils literal notranslate"><span class="pre">true_divide</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.div.html#torch.div" title="torch.div"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.div()</span></code></a> with <code class="docutils literal notranslate"><span class="pre">rounding_mode=None</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.eq"/><a class="reference internal" href="generated/torch.eq.html#torch.eq" title="torch.eq"><code class="xref py py-obj docutils literal notranslate"><span class="pre">eq</span></code></a></p></td>
<td><p>Computes element-wise equality</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.ne"/><a class="reference internal" href="generated/torch.ne.html#torch.ne" title="torch.ne"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ne</span></code></a></p></td>
<td><p>Computes <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>input</mtext><mo mathvariant="normal">≠</mo><mtext>other</mtext></mrow><annotation encoding="application/x-tex">\text{input} \neq \text{other}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord text"><span class="mord">input</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mrel"><span class="mord vbox"><span class="thinbox"><span class="rlap"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="inner"><span class="mord"><span class="mrel"></span></span></span><span class="fix"></span></span></span></span></span><span class="mrel">=</span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord text"><span class="mord">other</span></span></span></span></span></span> element-wise.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.le"/><a class="reference internal" href="generated/torch.le.html#torch.le" title="torch.le"><code class="xref py py-obj docutils literal notranslate"><span class="pre">le</span></code></a></p></td>
<td><p>Computes <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>input</mtext><mo>≤</mo><mtext>other</mtext></mrow><annotation encoding="application/x-tex">\text{input} \leq \text{other}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8623em;vertical-align:-0.1944em;"></span><span class="mord text"><span class="mord">input</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord text"><span class="mord">other</span></span></span></span></span></span> element-wise.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.ge"/><a class="reference internal" href="generated/torch.ge.html#torch.ge" title="torch.ge"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ge</span></code></a></p></td>
<td><p>Computes <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>input</mtext><mo>≥</mo><mtext>other</mtext></mrow><annotation encoding="application/x-tex">\text{input} \geq \text{other}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8623em;vertical-align:-0.1944em;"></span><span class="mord text"><span class="mord">input</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord text"><span class="mord">other</span></span></span></span></span></span> element-wise.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.greater"/><a class="reference internal" href="generated/torch.greater.html#torch.greater" title="torch.greater"><code class="xref py py-obj docutils literal notranslate"><span class="pre">greater</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.gt.html#torch.gt" title="torch.gt"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.gt()</span></code></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.greater_equal"/><a class="reference internal" href="generated/torch.greater_equal.html#torch.greater_equal" title="torch.greater_equal"><code class="xref py py-obj docutils literal notranslate"><span class="pre">greater_equal</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.ge.html#torch.ge" title="torch.ge"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.ge()</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.gt"/><a class="reference internal" href="generated/torch.gt.html#torch.gt" title="torch.gt"><code class="xref py py-obj docutils literal notranslate"><span class="pre">gt</span></code></a></p></td>
<td><p>Computes <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>input</mtext><mo>></mo><mtext>other</mtext></mrow><annotation encoding="application/x-tex">\text{input} > \text{other}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8623em;vertical-align:-0.1944em;"></span><span class="mord text"><span class="mord">input</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord text"><span class="mord">other</span></span></span></span></span></span> element-wise.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.less_equal"/><a class="reference internal" href="generated/torch.less_equal.html#torch.less_equal" title="torch.less_equal"><code class="xref py py-obj docutils literal notranslate"><span class="pre">less_equal</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.le.html#torch.le" title="torch.le"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.le()</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.lt"/><a class="reference internal" href="generated/torch.lt.html#torch.lt" title="torch.lt"><code class="xref py py-obj docutils literal notranslate"><span class="pre">lt</span></code></a></p></td>
<td><p>Computes <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>input</mtext><mo><</mo><mtext>other</mtext></mrow><annotation encoding="application/x-tex">\text{input} < \text{other}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8623em;vertical-align:-0.1944em;"></span><span class="mord text"><span class="mord">input</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord text"><span class="mord">other</span></span></span></span></span></span> element-wise.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.less"/><a class="reference internal" href="generated/torch.less.html#torch.less" title="torch.less"><code class="xref py py-obj docutils literal notranslate"><span class="pre">less</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.lt.html#torch.lt" title="torch.lt"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.lt()</span></code></a>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.maximum"/><a class="reference internal" href="generated/torch.maximum.html#torch.maximum" title="torch.maximum"><code class="xref py py-obj docutils literal notranslate"><span class="pre">maximum</span></code></a></p></td>
<td><p>Computes the element-wise maximum of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.minimum"/><a class="reference internal" href="generated/torch.minimum.html#torch.minimum" title="torch.minimum"><code class="xref py py-obj docutils literal notranslate"><span class="pre">minimum</span></code></a></p></td>
<td><p>Computes the element-wise minimum of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.fmax"/><a class="reference internal" href="generated/torch.fmax.html#torch.fmax" title="torch.fmax"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fmax</span></code></a></p></td>
<td><p>Computes the element-wise maximum of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.fmin"/><a class="reference internal" href="generated/torch.fmin.html#torch.fmin" title="torch.fmin"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fmin</span></code></a></p></td>
<td><p>Computes the element-wise minimum of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.not_equal"/><a class="reference internal" href="generated/torch.not_equal.html#torch.not_equal" title="torch.not_equal"><code class="xref py py-obj docutils literal notranslate"><span class="pre">not_equal</span></code></a></p></td>
<td><p>Alias for <a class="reference internal" href="generated/torch.ne.html#torch.ne" title="torch.ne"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.ne()</span></code></a>.</p></td>
</tr>
</tbody>
</table>
<p>The available inplace binary operators are all of the above <strong>except</strong>:</p>
<table class="autosummary longtable docutils align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.logaddexp"/><a class="reference internal" href="generated/torch.logaddexp.html#torch.logaddexp" title="torch.logaddexp"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logaddexp</span></code></a></p></td>
<td><p>Logarithm of the sum of exponentiations of the inputs.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.logaddexp2"/><a class="reference internal" href="generated/torch.logaddexp2.html#torch.logaddexp2" title="torch.logaddexp2"><code class="xref py py-obj docutils literal notranslate"><span class="pre">logaddexp2</span></code></a></p></td>
<td><p>Logarithm of the sum of exponentiations of the inputs in base-2.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.equal"/><a class="reference internal" href="generated/torch.equal.html#torch.equal" title="torch.equal"><code class="xref py py-obj docutils literal notranslate"><span class="pre">equal</span></code></a></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">True</span></code> if two tensors have the same size and elements, <code class="docutils literal notranslate"><span class="pre">False</span></code> otherwise.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.fmin"/><a class="reference internal" href="generated/torch.fmin.html#torch.fmin" title="torch.fmin"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fmin</span></code></a></p></td>
<td><p>Computes the element-wise minimum of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.minimum"/><a class="reference internal" href="generated/torch.minimum.html#torch.minimum" title="torch.minimum"><code class="xref py py-obj docutils literal notranslate"><span class="pre">minimum</span></code></a></p></td>
<td><p>Computes the element-wise minimum of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.fmax"/><a class="reference internal" href="generated/torch.fmax.html#torch.fmax" title="torch.fmax"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fmax</span></code></a></p></td>
<td><p>Computes the element-wise maximum of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
</tbody>
</table>
</section>
<section id="reductions">
<h3>Reductions<a class="headerlink" href="#reductions" title="Permalink to this heading">¶</a></h3>
<p>The following reductions are available (with autograd support). For more information, the
<a class="reference external" href="https://pytorch.org/tutorials/prototype/maskedtensor_overview.html">Overview</a> tutorial
details some examples of reductions, while the
<a class="reference external" href="https://pytorch.org/tutorials/prototype/maskedtensor_advanced_semantics.html">Advanced semantics</a> tutorial
has some further in-depth discussions about how we decided on certain reduction semantics.</p>
<table class="autosummary longtable docutils align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.sum"/><a class="reference internal" href="generated/torch.sum.html#torch.sum" title="torch.sum"><code class="xref py py-obj docutils literal notranslate"><span class="pre">sum</span></code></a></p></td>
<td><p>Returns the sum of all elements in the <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.mean"/><a class="reference internal" href="generated/torch.mean.html#torch.mean" title="torch.mean"><code class="xref py py-obj docutils literal notranslate"><span class="pre">mean</span></code></a></p></td>
<td><p>Returns the mean value of all elements in the <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.amin"/><a class="reference internal" href="generated/torch.amin.html#torch.amin" title="torch.amin"><code class="xref py py-obj docutils literal notranslate"><span class="pre">amin</span></code></a></p></td>
<td><p>Returns the minimum value of each slice of the <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor in the given dimension(s) <code class="xref py py-attr docutils literal notranslate"><span class="pre">dim</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.amax"/><a class="reference internal" href="generated/torch.amax.html#torch.amax" title="torch.amax"><code class="xref py py-obj docutils literal notranslate"><span class="pre">amax</span></code></a></p></td>
<td><p>Returns the maximum value of each slice of the <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor in the given dimension(s) <code class="xref py py-attr docutils literal notranslate"><span class="pre">dim</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.argmin"/><a class="reference internal" href="generated/torch.argmin.html#torch.argmin" title="torch.argmin"><code class="xref py py-obj docutils literal notranslate"><span class="pre">argmin</span></code></a></p></td>
<td><p>Returns the indices of the minimum value(s) of the flattened tensor or along a dimension</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.argmax"/><a class="reference internal" href="generated/torch.argmax.html#torch.argmax" title="torch.argmax"><code class="xref py py-obj docutils literal notranslate"><span class="pre">argmax</span></code></a></p></td>
<td><p>Returns the indices of the maximum value of all elements in the <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.prod"/><a class="reference internal" href="generated/torch.prod.html#torch.prod" title="torch.prod"><code class="xref py py-obj docutils literal notranslate"><span class="pre">prod</span></code></a></p></td>
<td><p>Returns the product of all elements in the <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.all"/><a class="reference internal" href="generated/torch.all.html#torch.all" title="torch.all"><code class="xref py py-obj docutils literal notranslate"><span class="pre">all</span></code></a></p></td>
<td><p>Tests if all elements in <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> evaluate to <cite>True</cite>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.norm"/><a class="reference internal" href="generated/torch.norm.html#torch.norm" title="torch.norm"><code class="xref py py-obj docutils literal notranslate"><span class="pre">norm</span></code></a></p></td>
<td><p>Returns the matrix norm or vector norm of a given tensor.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.var"/><a class="reference internal" href="generated/torch.var.html#torch.var" title="torch.var"><code class="xref py py-obj docutils literal notranslate"><span class="pre">var</span></code></a></p></td>
<td><p>Calculates the variance over the dimensions specified by <code class="xref py py-attr docutils literal notranslate"><span class="pre">dim</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.std"/><a class="reference internal" href="generated/torch.std.html#torch.std" title="torch.std"><code class="xref py py-obj docutils literal notranslate"><span class="pre">std</span></code></a></p></td>
<td><p>Calculates the standard deviation over the dimensions specified by <code class="xref py py-attr docutils literal notranslate"><span class="pre">dim</span></code>.</p></td>
</tr>
</tbody>
</table>
</section>
<section id="view-and-select-functions">
<h3>View and select functions<a class="headerlink" href="#view-and-select-functions" title="Permalink to this heading">¶</a></h3>
<p>We’ve included a number of view and select functions as well; intuitively, these operators will apply to
both the data and the mask and then wrap the result in a <code class="xref py py-class docutils literal notranslate"><span class="pre">MaskedTensor</span></code>. For a quick example,
consider <a class="reference internal" href="generated/torch.select.html#torch.select" title="torch.select"><code class="xref py py-func docutils literal notranslate"><span class="pre">select()</span></code></a>:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">data</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">12</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">data</span>
<span class="go">tensor([[ 0., 1., 2., 3.],</span>
<span class="go"> [ 4., 5., 6., 7.],</span>
<span class="go"> [ 8., 9., 10., 11.]])</span>
<span class="gp">>>> </span><span class="n">mask</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([[</span><span class="kc">True</span><span class="p">,</span> <span class="kc">False</span><span class="p">,</span> <span class="kc">False</span><span class="p">,</span> <span class="kc">True</span><span class="p">],</span> <span class="p">[</span><span class="kc">False</span><span class="p">,</span> <span class="kc">True</span><span class="p">,</span> <span class="kc">False</span><span class="p">,</span> <span class="kc">False</span><span class="p">],</span> <span class="p">[</span><span class="kc">True</span><span class="p">,</span> <span class="kc">True</span><span class="p">,</span> <span class="kc">True</span><span class="p">,</span> <span class="kc">True</span><span class="p">]])</span>
<span class="gp">>>> </span><span class="n">mt</span> <span class="o">=</span> <span class="n">masked_tensor</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">mask</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">data</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="go">tensor([4., 5., 6., 7.])</span>
<span class="gp">>>> </span><span class="n">mask</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="go">tensor([False, True, False, False])</span>
<span class="gp">>>> </span><span class="n">mt</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="go">MaskedTensor(</span>
<span class="go"> [ --, 5.0000, --, --]</span>
<span class="go">)</span>
</pre></div>
</div>
<p>The following ops are currently supported:</p>
<table class="autosummary longtable docutils align-default">
<tbody>
<tr class="row-odd"><td><p><p id="torch.atleast_1d"/><a class="reference internal" href="generated/torch.atleast_1d.html#torch.atleast_1d" title="torch.atleast_1d"><code class="xref py py-obj docutils literal notranslate"><span class="pre">atleast_1d</span></code></a></p></td>
<td><p>Returns a 1-dimensional view of each input tensor with zero dimensions.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.broadcast_tensors"/><a class="reference internal" href="generated/torch.broadcast_tensors.html#torch.broadcast_tensors" title="torch.broadcast_tensors"><code class="xref py py-obj docutils literal notranslate"><span class="pre">broadcast_tensors</span></code></a></p></td>
<td><p>Broadcasts the given tensors according to <a class="reference internal" href="notes/broadcasting.html#broadcasting-semantics"><span class="std std-ref">Broadcasting semantics</span></a>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.broadcast_to"/><a class="reference internal" href="generated/torch.broadcast_to.html#torch.broadcast_to" title="torch.broadcast_to"><code class="xref py py-obj docutils literal notranslate"><span class="pre">broadcast_to</span></code></a></p></td>
<td><p>Broadcasts <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> to the shape <code class="xref py py-attr docutils literal notranslate"><span class="pre">shape</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.cat"/><a class="reference internal" href="generated/torch.cat.html#torch.cat" title="torch.cat"><code class="xref py py-obj docutils literal notranslate"><span class="pre">cat</span></code></a></p></td>
<td><p>Concatenates the given sequence of <code class="xref py py-attr docutils literal notranslate"><span class="pre">seq</span></code> tensors in the given dimension.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.chunk"/><a class="reference internal" href="generated/torch.chunk.html#torch.chunk" title="torch.chunk"><code class="xref py py-obj docutils literal notranslate"><span class="pre">chunk</span></code></a></p></td>
<td><p>Attempts to split a tensor into the specified number of chunks.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.column_stack"/><a class="reference internal" href="generated/torch.column_stack.html#torch.column_stack" title="torch.column_stack"><code class="xref py py-obj docutils literal notranslate"><span class="pre">column_stack</span></code></a></p></td>
<td><p>Creates a new tensor by horizontally stacking the tensors in <code class="xref py py-attr docutils literal notranslate"><span class="pre">tensors</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.dsplit"/><a class="reference internal" href="generated/torch.dsplit.html#torch.dsplit" title="torch.dsplit"><code class="xref py py-obj docutils literal notranslate"><span class="pre">dsplit</span></code></a></p></td>
<td><p>Splits <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>, a tensor with three or more dimensions, into multiple tensors depthwise according to <code class="xref py py-attr docutils literal notranslate"><span class="pre">indices_or_sections</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.flatten"/><a class="reference internal" href="generated/torch.flatten.html#torch.flatten" title="torch.flatten"><code class="xref py py-obj docutils literal notranslate"><span class="pre">flatten</span></code></a></p></td>
<td><p>Flattens <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> by reshaping it into a one-dimensional tensor.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.hsplit"/><a class="reference internal" href="generated/torch.hsplit.html#torch.hsplit" title="torch.hsplit"><code class="xref py py-obj docutils literal notranslate"><span class="pre">hsplit</span></code></a></p></td>
<td><p>Splits <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>, a tensor with one or more dimensions, into multiple tensors horizontally according to <code class="xref py py-attr docutils literal notranslate"><span class="pre">indices_or_sections</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.hstack"/><a class="reference internal" href="generated/torch.hstack.html#torch.hstack" title="torch.hstack"><code class="xref py py-obj docutils literal notranslate"><span class="pre">hstack</span></code></a></p></td>
<td><p>Stack tensors in sequence horizontally (column wise).</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.kron"/><a class="reference internal" href="generated/torch.kron.html#torch.kron" title="torch.kron"><code class="xref py py-obj docutils literal notranslate"><span class="pre">kron</span></code></a></p></td>
<td><p>Computes the Kronecker product, denoted by <span class="math"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>⊗</mo></mrow><annotation encoding="application/x-tex">\otimes</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord">⊗</span></span></span></span></span>, of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> and <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.meshgrid"/><a class="reference internal" href="generated/torch.meshgrid.html#torch.meshgrid" title="torch.meshgrid"><code class="xref py py-obj docutils literal notranslate"><span class="pre">meshgrid</span></code></a></p></td>
<td><p>Creates grids of coordinates specified by the 1D inputs in <cite>attr</cite>:tensors.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.narrow"/><a class="reference internal" href="generated/torch.narrow.html#torch.narrow" title="torch.narrow"><code class="xref py py-obj docutils literal notranslate"><span class="pre">narrow</span></code></a></p></td>
<td><p>Returns a new tensor that is a narrowed version of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.ravel"/><a class="reference internal" href="generated/torch.ravel.html#torch.ravel" title="torch.ravel"><code class="xref py py-obj docutils literal notranslate"><span class="pre">ravel</span></code></a></p></td>
<td><p>Return a contiguous flattened tensor.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.select"/><a class="reference internal" href="generated/torch.select.html#torch.select" title="torch.select"><code class="xref py py-obj docutils literal notranslate"><span class="pre">select</span></code></a></p></td>
<td><p>Slices the <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> tensor along the selected dimension at the given index.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.split"/><a class="reference internal" href="generated/torch.split.html#torch.split" title="torch.split"><code class="xref py py-obj docutils literal notranslate"><span class="pre">split</span></code></a></p></td>
<td><p>Splits the tensor into chunks.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.t"/><a class="reference internal" href="generated/torch.t.html#torch.t" title="torch.t"><code class="xref py py-obj docutils literal notranslate"><span class="pre">t</span></code></a></p></td>
<td><p>Expects <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code> to be <= 2-D tensor and transposes dimensions 0 and 1.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.transpose"/><a class="reference internal" href="generated/torch.transpose.html#torch.transpose" title="torch.transpose"><code class="xref py py-obj docutils literal notranslate"><span class="pre">transpose</span></code></a></p></td>
<td><p>Returns a tensor that is a transposed version of <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><p id="torch.vsplit"/><a class="reference internal" href="generated/torch.vsplit.html#torch.vsplit" title="torch.vsplit"><code class="xref py py-obj docutils literal notranslate"><span class="pre">vsplit</span></code></a></p></td>
<td><p>Splits <code class="xref py py-attr docutils literal notranslate"><span class="pre">input</span></code>, a tensor with two or more dimensions, into multiple tensors vertically according to <code class="xref py py-attr docutils literal notranslate"><span class="pre">indices_or_sections</span></code>.</p></td>
</tr>
<tr class="row-even"><td><p><p id="torch.vstack"/><a class="reference internal" href="generated/torch.vstack.html#torch.vstack" title="torch.vstack"><code class="xref py py-obj docutils literal notranslate"><span class="pre">vstack</span></code></a></p></td>
<td><p>Stack tensors in sequence vertically (row wise).</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="generated/torch.Tensor.expand.html#torch.Tensor.expand" title="torch.Tensor.expand"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Tensor.expand</span></code></a></p></td>
<td><p>Returns a new view of the <code class="xref py py-attr docutils literal notranslate"><span class="pre">self</span></code> tensor with singleton dimensions expanded to a larger size.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="generated/torch.Tensor.expand_as.html#torch.Tensor.expand_as" title="torch.Tensor.expand_as"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Tensor.expand_as</span></code></a></p></td>
<td><p>Expand this tensor to the same size as <code class="xref py py-attr docutils literal notranslate"><span class="pre">other</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="generated/torch.Tensor.reshape.html#torch.Tensor.reshape" title="torch.Tensor.reshape"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Tensor.reshape</span></code></a></p></td>
<td><p>Returns a tensor with the same data and number of elements as <code class="xref py py-attr docutils literal notranslate"><span class="pre">self</span></code> but with the specified shape.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="generated/torch.Tensor.reshape_as.html#torch.Tensor.reshape_as" title="torch.Tensor.reshape_as"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Tensor.reshape_as</span></code></a></p></td>