forked from pytorch/pytorch.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextending.func.html
1293 lines (1065 loc) · 109 KB
/
extending.func.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Extending torch.func with autograd.Function — PyTorch 2.0 documentation</title>
<link rel="canonical" href="https://pytorch.org/docs/stable/notes/extending.func.html"/>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/copybutton.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/katex-math.css" type="text/css" />
<link rel="stylesheet" href="../_static/sphinx-dropdown.css" type="text/css" />
<link rel="stylesheet" href="../_static/panels-bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/jit.css" type="text/css" />
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Frequently Asked Questions" href="faq.html" />
<link rel="prev" title="Extending PyTorch" href="extending.html" />
<!-- Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-117752657-2"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-117752657-2');
</script>
<!-- End Google Analytics -->
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active docs-active">
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-orange-arrow">
Docs
</a>
<div class="resources-dropdown-menu">
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/docs/stable/index.html">
<span class="dropdown-title">PyTorch</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/audio/stable/index.html">
<span class="dropdown-title">torchaudio</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/text/stable/index.html">
<span class="dropdown-title">torchtext</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/vision/stable/index.html">
<span class="dropdown-title">torchvision</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torcharrow">
<span class="dropdown-title">torcharrow</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/data">
<span class="dropdown-title">TorchData</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchrec">
<span class="dropdown-title">TorchRec</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/serve/">
<span class="dropdown-title">TorchServe</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchx/">
<span class="dropdown-title">TorchX</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/xla">
<span class="dropdown-title">PyTorch on XLA Devices</span>
<p></p>
</a>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-arrow">
Resources
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/features">
<span class="dropdown-title">About</span>
<p>Learn about PyTorch’s features and capabilities</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/foundation">
<span class="dropdown-title">PyTorch Foundation</span>
<p>Learn about the PyTorch foundation</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/#community-module">
<span class="dropdown-title">Community</span>
<p>Join the PyTorch developer community to contribute, learn, and get your questions answered.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/community-stories">
<span class="dropdown-title">Community Stories</span>
<p>Learn how our community solves real, everyday machine learning problems with PyTorch.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/resources">
<span class="dropdown-title">Developer Resources</span>
<p>Find resources and get questions answered</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/events">
<span class="dropdown-title">Events</span>
<p>Find events, webinars, and podcasts</p>
</a>
<a class="nav-dropdown-item" href="https://discuss.pytorch.org/" target="_blank">
<span class="dropdown-title">Forums</span>
<p>A place to discuss PyTorch code, issues, install, research</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/hub">
<span class="dropdown-title">Models (Beta)</span>
<p>Discover, publish, and reuse pre-trained models</p>
</a>
</div>
</div>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
<a href='https://pytorch.org/docs/versions.html'>2.0 ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Community</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../community/build_ci_governance.html">PyTorch Governance | Build + CI</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/contribution_guide.html">PyTorch Contribution Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/design.html">PyTorch Design Philosophy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/governance.html">PyTorch Governance | Mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/persons_of_interest.html">PyTorch Governance | Maintainers</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="amp_examples.html">CUDA Automatic Mixed Precision examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="autograd.html">Autograd mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="broadcasting.html">Broadcasting semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="cpu_threading_torchscript_inference.html">CPU threading and TorchScript inference</a></li>
<li class="toctree-l1"><a class="reference internal" href="cuda.html">CUDA semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="ddp.html">Distributed Data Parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="extending.html">Extending PyTorch</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Extending torch.func with autograd.Function</a></li>
<li class="toctree-l1"><a class="reference internal" href="faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="gradcheck.html">Gradcheck mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="hip.html">HIP (ROCm) semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="large_scale_deployments.html">Features for large-scale deployments</a></li>
<li class="toctree-l1"><a class="reference internal" href="modules.html">Modules</a></li>
<li class="toctree-l1"><a class="reference internal" href="mps.html">MPS backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="multiprocessing.html">Multiprocessing best practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="numerical_accuracy.html">Numerical accuracy</a></li>
<li class="toctree-l1"><a class="reference internal" href="randomness.html">Reproducibility</a></li>
<li class="toctree-l1"><a class="reference internal" href="serialization.html">Serialization semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="windows.html">Windows FAQ</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">torch.compile</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/index.html">TorchDynamo Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/installation.html">Installing TorchDynamo</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/get-started.html">Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/guards-overview.html">Guards Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/custom-backends.html">Custom Backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/deep-dive.html">TorchDynamo Deeper Dive</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/troubleshooting.html">TorchDynamo Troubleshooting</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ir.html">IRs</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Language Bindings</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../cpp_index.html">C++</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/javadoc/">Javadoc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../deploy.html">torch::deploy</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Python API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../torch.html">torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.html">torch.nn</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.functional.html">torch.nn.functional</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensor_attributes.html">Tensor Attributes</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensor_view.html">Tensor Views</a></li>
<li class="toctree-l1"><a class="reference internal" href="../amp.html">torch.amp</a></li>
<li class="toctree-l1"><a class="reference internal" href="../autograd.html">torch.autograd</a></li>
<li class="toctree-l1"><a class="reference internal" href="../library.html">torch.library</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cuda.html">torch.cuda</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mps.html">torch.mps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../backends.html">torch.backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.html">torch.distributed</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.algorithms.join.html">torch.distributed.algorithms.join</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.elastic.html">torch.distributed.elastic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fsdp.html">torch.distributed.fsdp</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.optim.html">torch.distributed.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.tensor.parallel.html">torch.distributed.tensor.parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.checkpoint.html">torch.distributed.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributions.html">torch.distributions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../_dynamo.html">torch._dynamo</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fft.html">torch.fft</a></li>
<li class="toctree-l1"><a class="reference internal" href="../func.html">torch.func</a></li>
<li class="toctree-l1"><a class="reference internal" href="../futures.html">torch.futures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fx.html">torch.fx</a></li>
<li class="toctree-l1"><a class="reference internal" href="../hub.html">torch.hub</a></li>
<li class="toctree-l1"><a class="reference internal" href="../jit.html">torch.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../linalg.html">torch.linalg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../monitor.html">torch.monitor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../signal.html">torch.signal</a></li>
<li class="toctree-l1"><a class="reference internal" href="../special.html">torch.special</a></li>
<li class="toctree-l1"><a class="reference internal" href="../torch.overrides.html">torch.overrides</a></li>
<li class="toctree-l1"><a class="reference internal" href="../package.html">torch.package</a></li>
<li class="toctree-l1"><a class="reference internal" href="../profiler.html">torch.profiler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.init.html">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="../onnx.html">torch.onnx</a></li>
<li class="toctree-l1"><a class="reference internal" href="../onnx_diagnostics.html">torch.onnx diagnostics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../optim.html">torch.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../complex_numbers.html">Complex Numbers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ddp_comm_hooks.html">DDP Communication Hooks</a></li>
<li class="toctree-l1"><a class="reference internal" href="../pipeline.html">Pipeline Parallelism</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../rpc.html">Distributed RPC Framework</a></li>
<li class="toctree-l1"><a class="reference internal" href="../random.html">torch.random</a></li>
<li class="toctree-l1"><a class="reference internal" href="../masked.html">torch.masked</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nested.html">torch.nested</a></li>
<li class="toctree-l1"><a class="reference internal" href="../sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../testing.html">torch.testing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../benchmark_utils.html">torch.utils.benchmark</a></li>
<li class="toctree-l1"><a class="reference internal" href="../bottleneck.html">torch.utils.bottleneck</a></li>
<li class="toctree-l1"><a class="reference internal" href="../checkpoint.html">torch.utils.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cpp_extension.html">torch.utils.cpp_extension</a></li>
<li class="toctree-l1"><a class="reference internal" href="../data.html">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../jit_utils.html">torch.utils.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dlpack.html">torch.utils.dlpack</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mobile_optimizer.html">torch.utils.mobile_optimizer</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensorboard.html">torch.utils.tensorboard</a></li>
<li class="toctree-l1"><a class="reference internal" href="../type_info.html">Type Info</a></li>
<li class="toctree-l1"><a class="reference internal" href="../named_tensor.html">Named Tensors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../name_inference.html">Named Tensors operator coverage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../config_mod.html">torch.__config__</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Libraries</span></p>
<ul>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/audio/stable">torchaudio</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/data">TorchData</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/torchrec">TorchRec</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/serve">TorchServe</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/text/stable">torchtext</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/vision/stable">torchvision</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/xla/">PyTorch on XLA Devices</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../index.html">
Docs
</a> >
</li>
<li>Extending torch.func with autograd.Function</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/notes/extending.func.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="extending-torch-func-with-autograd-function">
<span id="func-autograd-function"></span><h1>Extending torch.func with autograd.Function<a class="headerlink" href="#extending-torch-func-with-autograd-function" title="Permalink to this heading">¶</a></h1>
<p>So you’d like to use <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> with the <a class="reference internal" href="../func.api.html#module-torch.func" title="torch.func"><code class="xref py py-mod docutils literal notranslate"><span class="pre">torch.func</span></code></a>
transforms like <a class="reference internal" href="../generated/torch.vmap.html#torch.vmap" title="torch.vmap"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.vmap()</span></code></a>, <a class="reference internal" href="../generated/torch.func.grad.html#torch.func.grad" title="torch.func.grad"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.func.grad()</span></code></a>, etc.</p>
<p>There are two main use cases:</p>
<ul class="simple">
<li><p>you wish to call code that does not contain PyTorch operations and
have it work with function transforms. That is, the <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a>’s
forward/backward/etc calls into functions from other systems like C++, CUDA, numpy.</p></li>
<li><p>you wish to specify custom gradient rules, like
JAX’s <a class="reference external" href="https://jax.readthedocs.io/en/latest/notebooks/Custom_derivative_rules_for_Python_code.html">custom_vjp/custom_jvp</a></p></li>
</ul>
<p>PyTorch combines both of these concepts into <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a>.</p>
<section id="basic-usage">
<h2>Basic Usage<a class="headerlink" href="#basic-usage" title="Permalink to this heading">¶</a></h2>
<p>This guide assumes you are familiar with <a class="reference internal" href="extending.html#extending-autograd"><span class="std std-ref">Extending torch.autograd</span></a>,
which explains how to use <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a>.</p>
<p><a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> can either have a <a class="reference internal" href="../generated/torch.autograd.Function.forward.html#torch.autograd.Function.forward" title="torch.autograd.Function.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a> that accepts a ctx object,
or it can have separate <a class="reference internal" href="../generated/torch.autograd.Function.forward.html#torch.autograd.Function.forward" title="torch.autograd.Function.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a> (that does not accept <code class="docutils literal notranslate"><span class="pre">ctx</span></code>) and a <code class="xref py py-meth docutils literal notranslate"><span class="pre">setup_context()</span></code>
staticmethod that modifies the <code class="docutils literal notranslate"><span class="pre">ctx</span></code> object.</p>
<p>Only the latter is supported with function transforms:</p>
<ul class="simple">
<li><p><a class="reference internal" href="../generated/torch.autograd.Function.forward.html#torch.autograd.Function.forward" title="torch.autograd.Function.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a> is the code that performs the operation and it should not accept
a <code class="docutils literal notranslate"><span class="pre">ctx</span></code> object.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">setup_context(ctx,</span> <span class="pre">inputs,</span> <span class="pre">output)</span></code> is the code where you can
call methods on <code class="docutils literal notranslate"><span class="pre">ctx</span></code>. Here is where you should save Tensors for backward
(by calling <code class="docutils literal notranslate"><span class="pre">ctx.save_for_backward(*tensors)</span></code>), or save non-Tensors
(by assigning them to the <code class="docutils literal notranslate"><span class="pre">ctx</span></code> object).</p></li>
</ul>
<p>Any intermediates that need to be saved must be returned as an output from
<a class="reference internal" href="../generated/torch.autograd.Function.forward.html#torch.autograd.Function.forward" title="torch.autograd.Function.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a>.</p>
<p>Depending on the transform,</p>
<ul class="simple">
<li><p>to support reverse-mode AD (<a class="reference internal" href="../generated/torch.func.grad.html#torch.func.grad" title="torch.func.grad"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.func.grad()</span></code></a>, <a class="reference internal" href="../generated/torch.func.vjp.html#torch.func.vjp" title="torch.func.vjp"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.func.vjp()</span></code></a>),
the <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> needs a <a class="reference internal" href="../generated/torch.autograd.Function.backward.html#torch.autograd.Function.backward" title="torch.autograd.Function.backward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">backward()</span></code></a> staticmethod.</p></li>
<li><p>to support <a class="reference internal" href="../generated/torch.vmap.html#torch.vmap" title="torch.vmap"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.vmap()</span></code></a>, the <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> needs a <a class="reference internal" href="../generated/torch.autograd.Function.vmap.html#torch.autograd.Function.vmap" title="torch.autograd.Function.vmap"><code class="xref py py-meth docutils literal notranslate"><span class="pre">vmap()</span></code></a> staticmethod.</p></li>
<li><p>to support <a class="reference internal" href="../generated/torch.func.jvp.html#torch.func.jvp" title="torch.func.jvp"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.func.jvp()</span></code></a>, the <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> needs a <a class="reference internal" href="../generated/torch.autograd.Function.jvp.html#torch.autograd.Function.jvp" title="torch.autograd.Function.jvp"><code class="xref py py-meth docutils literal notranslate"><span class="pre">jvp()</span></code></a> staticmethod.</p></li>
<li><p>to support compositions of transforms (like <a class="reference internal" href="../generated/torch.func.jacrev.html#torch.func.jacrev" title="torch.func.jacrev"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.func.jacrev()</span></code></a>,
<a class="reference internal" href="../generated/torch.func.jacfwd.html#torch.func.jacfwd" title="torch.func.jacfwd"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.func.jacfwd()</span></code></a>, <a class="reference internal" href="../generated/torch.func.hessian.html#torch.func.hessian" title="torch.func.hessian"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.func.hessian()</span></code></a>) – you may need multiple
of the above.</p></li>
</ul>
<p>In order for the <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> to be arbitrarily composable with function
transforms, we recommend that all other staticmethods other than <a class="reference internal" href="../generated/torch.autograd.Function.forward.html#torch.autograd.Function.forward" title="torch.autograd.Function.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a> and
<code class="xref py py-meth docutils literal notranslate"><span class="pre">setup_context()</span></code> must be transformable: that is, they must consist of only PyTorch
operators or call other <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> (that may call into C++/CUDA/etc).</p>
<p>Let’s go over some examples of common use cases.</p>
<section id="example-1-autograd-function-calls-into-another-system">
<h3>Example 1: autograd.Function calls into another system<a class="headerlink" href="#example-1-autograd-function-calls-into-another-system" title="Permalink to this heading">¶</a></h3>
<p>A common case is a <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> with both forward() and backward() calling
into another system (like C++, CUDA, numpy, triton).</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="k">def</span> <span class="nf">to_numpy</span><span class="p">(</span><span class="n">tensor</span><span class="p">):</span>
<span class="k">return</span> <span class="n">tensor</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
<span class="k">class</span> <span class="nc">NumpySort</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">autograd</span><span class="o">.</span><span class="n">Function</span><span class="p">):</span>
<span class="c1"># Note that forward does not take ctx</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="p">):</span>
<span class="n">device</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">device</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">to_numpy</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">ind</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argsort</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="n">dim</span><span class="p">)</span>
<span class="n">ind_inv</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argsort</span><span class="p">(</span><span class="n">ind</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="n">dim</span><span class="p">)</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">take_along_axis</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="n">dim</span><span class="p">)</span>
<span class="c1"># Any intermediates to be saved in backward must be returned as</span>
<span class="c1"># outputs.</span>
<span class="k">return</span> <span class="p">(</span>
<span class="c1"># The desired output</span>
<span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">result</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">),</span>
<span class="c1"># intermediate to save for backward</span>
<span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">ind</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">),</span>
<span class="c1"># intermediate to save for backward</span>
<span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">ind_inv</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">),</span>
<span class="p">)</span>
<span class="c1"># setup_context is responsible for calling methods and/or assigning to</span>
<span class="c1"># the ctx object. Please do not do additional compute (e.g. add</span>
<span class="c1"># Tensors together) in setup_context.</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">setup_context</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">output</span><span class="p">):</span>
<span class="n">x</span><span class="p">,</span> <span class="n">dim</span> <span class="o">=</span> <span class="n">inputs</span>
<span class="c1"># Note that output is whatever you returned from forward.</span>
<span class="c1"># If you returned multiple values, then output is a Tuple of multiple values.</span>
<span class="c1"># If you returned a single Tensor, then output is a Tensor.</span>
<span class="c1"># If you returned a Tuple with a single Tensor, then output is a</span>
<span class="c1"># Tuple with a single Tensor.</span>
<span class="n">_</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span> <span class="o">=</span> <span class="n">output</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">mark_non_differentiable</span><span class="p">(</span><span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">)</span>
<span class="c1"># Tensors must be saved via ctx.save_for_backward. Please do not</span>
<span class="c1"># assign them directly onto the ctx object.</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">save_for_backward</span><span class="p">(</span><span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">)</span>
<span class="c1"># Non-tensors may be saved by assigning them as attributes on the ctx object.</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">dim</span> <span class="o">=</span> <span class="n">dim</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">grad_output</span><span class="p">,</span> <span class="n">_0</span><span class="p">,</span> <span class="n">_1</span><span class="p">):</span>
<span class="c1"># For the autograd.Function to be arbitrarily composable with function</span>
<span class="c1"># transforms, all staticmethod other than forward and setup_context</span>
<span class="c1"># must be implemented in a "transformable" way; that is, they must</span>
<span class="c1"># only consist of PyTorch operations or autograd.Function.</span>
<span class="c1">#</span>
<span class="c1"># For example, this allows us to do double backwards and/or compute</span>
<span class="c1"># second order gradients.</span>
<span class="c1">#</span>
<span class="c1"># We've written the backward pass of NumpySort in terms of another</span>
<span class="c1"># autograd.Function, NumpyTake.</span>
<span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">saved_tensors</span>
<span class="k">return</span> <span class="n">NumpyTake</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">grad_output</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">ctx</span><span class="o">.</span><span class="n">dim</span><span class="p">),</span> <span class="kc">None</span>
<span class="k">class</span> <span class="nc">NumpyTake</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">autograd</span><span class="o">.</span><span class="n">Function</span><span class="p">):</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">,</span> <span class="n">dim</span><span class="p">):</span>
<span class="n">device</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">device</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">to_numpy</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">ind</span> <span class="o">=</span> <span class="n">to_numpy</span><span class="p">(</span><span class="n">ind</span><span class="p">)</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">take_along_axis</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">dim</span><span class="p">),</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">setup_context</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">output</span><span class="p">):</span>
<span class="n">x</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">,</span> <span class="n">dim</span> <span class="o">=</span> <span class="n">inputs</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">save_for_backward</span><span class="p">(</span><span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">)</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">dim</span> <span class="o">=</span> <span class="n">dim</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">grad_output</span><span class="p">):</span>
<span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">saved_tensors</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">NumpyTake</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">grad_output</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">ctx</span><span class="o">.</span><span class="n">dim</span><span class="p">)</span>
<span class="k">return</span> <span class="n">result</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span>
</pre></div>
</div>
<p>Now, to make it easier to use <code class="docutils literal notranslate"><span class="pre">NumpySort</span></code> (to hide away the intermediates we
returned as outputs, as well as allow default args and kwargs), we create a new
function that invokes it:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">numpy_sort</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">):</span>
<span class="n">result</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">NumpySort</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="p">)</span>
<span class="k">return</span> <span class="n">result</span>
</pre></div>
</div>
<p>And here’s a sanity check:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="n">grad_x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">func</span><span class="o">.</span><span class="n">grad</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">numpy_sort</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">())(</span><span class="n">x</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">torch</span><span class="o">.</span><span class="n">allclose</span><span class="p">(</span><span class="n">grad_x</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones_like</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
</pre></div>
</div>
</section>
<section id="example-2-autograd-function-specifies-custom-gradient-rules">
<h3>Example 2: autograd.Function specifies custom gradient rules<a class="headerlink" href="#example-2-autograd-function-specifies-custom-gradient-rules" title="Permalink to this heading">¶</a></h3>
<p>Another common case is an <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> that is implemented with PyTorch
operations. PyTorch is able to compute gradients for PyTorch operations automatically,
but perhaps we wish to customize how the gradients are computed. Some reasons why
we may want a custom backward different from the one PyTorch gives us are:</p>
<ul class="simple">
<li><p>improving numeric stability</p></li>
<li><p>changing the performance characteristics of the backward</p></li>
<li><p>changing how edge cases are handled (e.g. nans, inf)</p></li>
<li><p>modifying the gradient (e.g. gradient clipping)</p></li>
</ul>
<p>Here’s an example of an <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> for the function <code class="docutils literal notranslate"><span class="pre">y</span> <span class="pre">=</span> <span class="pre">x</span> <span class="pre">**</span> <span class="pre">3</span></code> where we
change the performance characteristics (some computation that would normally happen
during the backward pass, computing dx, happens in the forward pass).</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">MyCube</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">autograd</span><span class="o">.</span><span class="n">Function</span><span class="p">):</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">x</span> <span class="o">**</span> <span class="mi">3</span>
<span class="c1"># In regular PyTorch, if we had just run y = x ** 3, then the backward</span>
<span class="c1"># pass computes dx = 3 * x ** 2. In this autograd.Function, we've done</span>
<span class="c1"># that computation here in the forward pass instead.</span>
<span class="n">dx</span> <span class="o">=</span> <span class="mi">3</span> <span class="o">*</span> <span class="n">x</span> <span class="o">**</span> <span class="mi">2</span>
<span class="k">return</span> <span class="n">result</span><span class="p">,</span> <span class="n">dx</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">setup_context</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">output</span><span class="p">):</span>
<span class="n">x</span><span class="p">,</span> <span class="o">=</span> <span class="n">inputs</span>
<span class="n">result</span><span class="p">,</span> <span class="n">dx</span> <span class="o">=</span> <span class="n">output</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">save_for_backward</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dx</span><span class="p">)</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">grad_output</span><span class="p">,</span> <span class="n">grad_dx</span><span class="p">):</span>
<span class="n">x</span><span class="p">,</span> <span class="n">dx</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">saved_tensors</span>
<span class="c1"># In order for the autograd.Function to work with higher-order</span>
<span class="c1"># gradients, we must add the gradient contribution of `dx`.</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">grad_output</span> <span class="o">*</span> <span class="n">dx</span> <span class="o">+</span> <span class="n">grad_dx</span> <span class="o">*</span> <span class="mi">6</span> <span class="o">*</span> <span class="n">x</span>
<span class="k">return</span> <span class="n">result</span>
</pre></div>
</div>
<p>Now, to make it easier to use <code class="docutils literal notranslate"><span class="pre">NumpySort</span></code> (and hide away the intermediates we
returned as outputs) we create a new function that invokes it:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">my_cube</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="n">result</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">MyCube</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">result</span>
</pre></div>
</div>
<p>Here’s a sanity check computing the second-order gradients:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">([])</span>
<span class="n">ggx</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">func</span><span class="o">.</span><span class="n">grad</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">func</span><span class="o">.</span><span class="n">grad</span><span class="p">(</span><span class="n">my_cube</span><span class="p">))(</span><span class="n">x</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">torch</span><span class="o">.</span><span class="n">allclose</span><span class="p">(</span><span class="n">ggx</span><span class="p">,</span> <span class="mi">6</span> <span class="o">*</span> <span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="limitations-and-gotchas">
<h3>Limitations and gotchas<a class="headerlink" href="#limitations-and-gotchas" title="Permalink to this heading">¶</a></h3>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p>Please read these limitations of <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> with torch.func transforms
carefully. We are not able to catch many of these situations and error out
gracefully so they will lead to undefined behavior.</p>
</div>
<p>Please do not capture Tensors that are being transformed over, have
requires_grad=True, or are dual tensors, into the methods of the
<a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a>. The way to be completely safe is to ensure that the only
Tensors being used inside any method of the <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> must be directly
passed as inputs (or via the ctx object) rather than come from outside
the <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a>.</p>
<p><a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> does not handle Tensors in pytrees (arbitrary nested
Python data structures that may or may not contain Tensors). For
those Tensors to be tracked by autograd, they must be passed directly as
an argument to <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a>. This is in contrast to
jax.{custom_vjp, custom_jvp}, which do accept pytrees.</p>
<p>Please only use <a class="reference internal" href="../generated/torch.autograd.function.FunctionCtx.save_for_backward.html#torch.autograd.function.FunctionCtx.save_for_backward" title="torch.autograd.function.FunctionCtx.save_for_backward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">save_for_backward()</span></code></a> or
<code class="xref py py-meth docutils literal notranslate"><span class="pre">save_for_forward()</span></code> to save Tensors.
Please do not assign Tensors or collections of Tensors directly onto the ctx object -
these Tensors will not get tracked</p>
</section>
</section>
<section id="torch-vmap-support">
<h2><a class="reference internal" href="../generated/torch.vmap.html#torch.vmap" title="torch.vmap"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.vmap()</span></code></a> Support<a class="headerlink" href="#torch-vmap-support" title="Permalink to this heading">¶</a></h2>
<p>To use an <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> with <a class="reference internal" href="../generated/torch.vmap.html#torch.vmap" title="torch.vmap"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.vmap()</span></code></a>, you must either:</p>
<ul class="simple">
<li><p>provide a <a class="reference internal" href="../generated/torch.autograd.Function.vmap.html#torch.autograd.Function.vmap" title="torch.autograd.Function.vmap"><code class="xref py py-meth docutils literal notranslate"><span class="pre">vmap()</span></code></a> staticmethod that tells us the behavior of the <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a>
under <a class="reference internal" href="../generated/torch.vmap.html#torch.vmap" title="torch.vmap"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.vmap()</span></code></a></p></li>
<li><p>ask us to autogenerate it by setting <code class="docutils literal notranslate"><span class="pre">generate_vmap_rule=True</span></code>.</p></li>
</ul>
<section id="automatically-generate-a-vmap-rule">
<h3>Automatically generate a vmap rule<a class="headerlink" href="#automatically-generate-a-vmap-rule" title="Permalink to this heading">¶</a></h3>
<p>If your <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> fulfills the following additional constraints, then we
are able to generate a vmap rule for it. If it doesn’t fulfill the constraints or if you
want custom behavior under vmap, please manually define a vmap staticmethod (see next section).</p>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p>We are not easily able to check for the following constraints and error
out gracefully. Violation of the constraints may lead to undefined
behavior.</p>
</div>
<ul class="simple">
<li><p>The <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a>’s <a class="reference internal" href="../generated/torch.autograd.Function.forward.html#torch.autograd.Function.forward" title="torch.autograd.Function.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a>, <a class="reference internal" href="../generated/torch.autograd.Function.backward.html#torch.autograd.Function.backward" title="torch.autograd.Function.backward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">backward()</span></code></a> (if it exists) and <a class="reference internal" href="../generated/torch.autograd.Function.jvp.html#torch.autograd.Function.jvp" title="torch.autograd.Function.jvp"><code class="xref py py-meth docutils literal notranslate"><span class="pre">jvp()</span></code></a>
(if it exists) staticmethods must be transformable via <a class="reference internal" href="../generated/torch.vmap.html#torch.vmap" title="torch.vmap"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.vmap()</span></code></a>. That
is, they must consist of only PyTorch operations (as opposed to e.g. NumPy or custom
CUDA kernels).</p></li>
</ul>
<p>Example:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">MyCube</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">autograd</span><span class="o">.</span><span class="n">Function</span><span class="p">):</span>
<span class="c1"># Set generate_vmap_rule to True to ask PyTorch to automatically generate</span>
<span class="c1"># a vmap rule.</span>
<span class="n">generate_vmap_rule</span> <span class="o">=</span> <span class="kc">True</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">x</span> <span class="o">**</span> <span class="mi">3</span>
<span class="n">dx</span> <span class="o">=</span> <span class="mi">3</span> <span class="o">*</span> <span class="n">x</span> <span class="o">**</span> <span class="mi">2</span>
<span class="k">return</span> <span class="n">result</span><span class="p">,</span> <span class="n">dx</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">setup_context</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">output</span><span class="p">):</span>
<span class="n">x</span><span class="p">,</span> <span class="o">=</span> <span class="n">inputs</span>
<span class="n">result</span><span class="p">,</span> <span class="n">dx</span> <span class="o">=</span> <span class="n">output</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">save_for_backward</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dx</span><span class="p">)</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">grad_output</span><span class="p">,</span> <span class="n">grad_dx</span><span class="p">):</span>
<span class="n">x</span><span class="p">,</span> <span class="n">dx</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">saved_tensors</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">grad_output</span> <span class="o">*</span> <span class="n">dx</span> <span class="o">+</span> <span class="n">grad_dx</span> <span class="o">*</span> <span class="mi">6</span> <span class="o">*</span> <span class="n">x</span>
<span class="k">return</span> <span class="n">result</span>
<span class="k">def</span> <span class="nf">my_cube</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="n">result</span><span class="p">,</span> <span class="n">dx</span> <span class="o">=</span> <span class="n">MyCube</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">result</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">vmap</span><span class="p">(</span><span class="n">my_cube</span><span class="p">)(</span><span class="n">x</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">torch</span><span class="o">.</span><span class="n">allclose</span><span class="p">(</span><span class="n">result</span><span class="p">,</span> <span class="n">x</span> <span class="o">**</span> <span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="defining-the-vmap-staticmethod">
<h3>Defining the vmap staticmethod<a class="headerlink" href="#defining-the-vmap-staticmethod" title="Permalink to this heading">¶</a></h3>
<p>If your <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> calls into another system (like NumPy, C++, CUDA, triton),
then to get it to work with <a class="reference internal" href="../generated/torch.vmap.html#torch.vmap" title="torch.vmap"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.vmap()</span></code></a> or transforms that use it, you’ll
need to manually define a <a class="reference internal" href="../generated/torch.autograd.Function.vmap.html#torch.autograd.Function.vmap" title="torch.autograd.Function.vmap"><code class="xref py py-meth docutils literal notranslate"><span class="pre">vmap()</span></code></a> staticmethod.</p>
<p>Depending on what transforms you want to use and your use case, you may not need
to add a <a class="reference internal" href="../generated/torch.autograd.Function.vmap.html#torch.autograd.Function.vmap" title="torch.autograd.Function.vmap"><code class="xref py py-meth docutils literal notranslate"><span class="pre">vmap()</span></code></a> staticmethod to all of your <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a>:</p>
<ul class="simple">
<li><p>For example, <a class="reference internal" href="../generated/torch.func.jacrev.html#torch.func.jacrev" title="torch.func.jacrev"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.func.jacrev()</span></code></a> performs <a class="reference internal" href="../generated/torch.vmap.html#torch.vmap" title="torch.vmap"><code class="xref py py-func docutils literal notranslate"><span class="pre">vmap()</span></code></a> over the backward pass.
So if you’re only interested in using <a class="reference internal" href="../generated/torch.func.jacrev.html#torch.func.jacrev" title="torch.func.jacrev"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.func.jacrev()</span></code></a>, only
the <a class="reference internal" href="../generated/torch.autograd.Function.backward.html#torch.autograd.Function.backward" title="torch.autograd.Function.backward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">backward()</span></code></a> staticmethod needs to be vmappable.</p></li>
</ul>
<p>We do recommend ensuring all of your <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> have support for
<a class="reference internal" href="../generated/torch.vmap.html#torch.vmap" title="torch.vmap"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.vmap()</span></code></a> though, especially if you are writing a third-party library and you want your
<a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> to work with all combinations of <a class="reference internal" href="../func.api.html#module-torch.func" title="torch.func"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.func()</span></code></a> transforms.</p>
<p>Conceptually, the vmap staticmethod is responsible for defining how the <a class="reference internal" href="../generated/torch.autograd.Function.forward.html#torch.autograd.Function.forward" title="torch.autograd.Function.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a>
should behave under <a class="reference internal" href="../generated/torch.vmap.html#torch.vmap" title="torch.vmap"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.vmap()</span></code></a>. That is, it defines how to transform
the <a class="reference internal" href="../generated/torch.autograd.Function.forward.html#torch.autograd.Function.forward" title="torch.autograd.Function.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a> to run over inputs with an additional dimension (the dimension
being vmapped over). This is similar to how <a class="reference internal" href="../generated/torch.vmap.html#torch.vmap" title="torch.vmap"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.vmap()</span></code></a> is implemented over
PyTorch operations: for each operation, we define a vmap rule (sometimes also
referred to as a “batching rule”).</p>
<p>Here’s how to define the <a class="reference internal" href="../generated/torch.autograd.Function.vmap.html#torch.autograd.Function.vmap" title="torch.autograd.Function.vmap"><code class="xref py py-meth docutils literal notranslate"><span class="pre">vmap()</span></code></a> staticmethod:</p>
<ul class="simple">
<li><p>the signature is <code class="docutils literal notranslate"><span class="pre">vmap(info,</span> <span class="pre">in_dims:</span> <span class="pre">Tuple[Optional[int]],</span> <span class="pre">*args)</span></code>, where
<code class="docutils literal notranslate"><span class="pre">*args</span></code> is the same as the args to <a class="reference internal" href="../generated/torch.autograd.Function.forward.html#torch.autograd.Function.forward" title="torch.autograd.Function.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a>.</p></li>
<li><p>The vmap staticmethod is responsible for defining how the <a class="reference internal" href="../generated/torch.autograd.Function.forward.html#torch.autograd.Function.forward" title="torch.autograd.Function.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a> should behave
under <a class="reference internal" href="../generated/torch.vmap.html#torch.vmap" title="torch.vmap"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.vmap()</span></code></a>. That is, given inputs with an additional dimension
(specified by <code class="docutils literal notranslate"><span class="pre">in_dims</span></code>), how do we compute the batched version of <a class="reference internal" href="../generated/torch.autograd.Function.forward.html#torch.autograd.Function.forward" title="torch.autograd.Function.forward"><code class="xref py py-meth docutils literal notranslate"><span class="pre">forward()</span></code></a>?</p></li>
<li><p>For each arg in <code class="docutils literal notranslate"><span class="pre">args</span></code>, <code class="docutils literal notranslate"><span class="pre">in_dims</span></code> has a corresponding <code class="docutils literal notranslate"><span class="pre">Optional[int]</span></code>.
It is <code class="docutils literal notranslate"><span class="pre">None</span></code> if the arg is not a Tensor or if the arg is not being vmapped over,
otherwise, it is an integer specifying what dimension of the Tensor is being vmapped
over.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">info</span></code> is a collection of additional metadata that may be helpful:
<code class="docutils literal notranslate"><span class="pre">info.batch_size</span></code> specifies the size of the dimension being vmapped over, while
<code class="docutils literal notranslate"><span class="pre">info.randomness</span></code> is the <code class="docutils literal notranslate"><span class="pre">randomness</span></code> option that was passed to <a class="reference internal" href="../generated/torch.vmap.html#torch.vmap" title="torch.vmap"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.vmap()</span></code></a>.</p></li>
<li><p>The return of the vmap staticmethod is a tuple of <code class="docutils literal notranslate"><span class="pre">(output,</span> <span class="pre">out_dims)</span></code>. Similar
to <code class="docutils literal notranslate"><span class="pre">in_dims</span></code>, <code class="docutils literal notranslate"><span class="pre">out_dims</span></code> should be of the same structure as <code class="docutils literal notranslate"><span class="pre">output</span></code> and contain
one <code class="docutils literal notranslate"><span class="pre">out_dim</span></code> per output that specifies if the output has the vmapped
dimension and what index it is in.</p></li>
</ul>
<p>Example:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">to_numpy</span><span class="p">(</span><span class="n">tensor</span><span class="p">):</span>
<span class="k">return</span> <span class="n">tensor</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
<span class="k">class</span> <span class="nc">NumpySort</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">autograd</span><span class="o">.</span><span class="n">Function</span><span class="p">):</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="p">):</span>
<span class="n">device</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">device</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">to_numpy</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">ind</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argsort</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="n">dim</span><span class="p">)</span>
<span class="n">ind_inv</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argsort</span><span class="p">(</span><span class="n">ind</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="n">dim</span><span class="p">)</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">take_along_axis</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="n">dim</span><span class="p">)</span>
<span class="k">return</span> <span class="p">(</span>
<span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">result</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">),</span>
<span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">ind</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">),</span>
<span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">ind_inv</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">),</span>
<span class="p">)</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">setup_context</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">output</span><span class="p">):</span>
<span class="n">x</span><span class="p">,</span> <span class="n">dim</span> <span class="o">=</span> <span class="n">inputs</span>
<span class="n">_</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span> <span class="o">=</span> <span class="n">output</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">mark_non_differentiable</span><span class="p">(</span><span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">)</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">save_for_backward</span><span class="p">(</span><span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">)</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">dim</span> <span class="o">=</span> <span class="n">dim</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">grad_output</span><span class="p">,</span> <span class="n">_0</span><span class="p">,</span> <span class="n">_1</span><span class="p">):</span>
<span class="k">return</span> <span class="n">NumpyTake</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">grad_output</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">ctx</span><span class="o">.</span><span class="n">dim</span><span class="p">),</span> <span class="kc">None</span>
<span class="c1"># The signature of the vmap staticmethod is:</span>
<span class="c1"># vmap(info, in_dims: Tuple[Optional[int]], *args)</span>
<span class="c1"># where *args is the same as the arguments to `forward`.</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">vmap</span><span class="p">(</span><span class="n">info</span><span class="p">,</span> <span class="n">in_dims</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="p">):</span>
<span class="c1"># For every input (x and dim), in_dims stores an Optional[int]</span>
<span class="c1"># that is:</span>
<span class="c1"># - None if the input is not being vmapped over or if the input</span>
<span class="c1"># is not a Tensor</span>
<span class="c1"># - an integer if the input is being vmapped over that represents</span>
<span class="c1"># the index of the dimension being vmapped over.</span>
<span class="n">x_bdim</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">in_dims</span>
<span class="c1"># A "vmap rule" is the logic of how to perform the operation given</span>
<span class="c1"># inputs with one additional dimension. In NumpySort, x has an</span>
<span class="c1"># additional dimension (x_bdim). The vmap rule is simply</span>
<span class="c1"># to call NumpySort again but pass it a different `dim`.</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">movedim</span><span class="p">(</span><span class="n">x_bdim</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="c1"># Handle negative dims correctly</span>
<span class="n">dim</span> <span class="o">=</span> <span class="n">dim</span> <span class="k">if</span> <span class="n">dim</span> <span class="o">>=</span> <span class="mi">0</span> <span class="k">else</span> <span class="n">dim</span> <span class="o">+</span> <span class="n">x</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">NumpySort</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
<span class="c1"># The vmap rule must return a tuple of two things</span>
<span class="c1"># 1. the output. Should be the same amount of things</span>
<span class="c1"># as returned by the forward().</span>
<span class="c1"># 2. one Optional[int] for each output specifying if each output</span>
<span class="c1"># is being vmapped over, and if so, the index of the</span>
<span class="c1"># dimension being vmapped over.</span>
<span class="c1">#</span>
<span class="c1"># NumpySort.forward returns a Tuple of 3 Tensors. Since we moved the</span>
<span class="c1"># dimension being vmapped over to the front of `x`, that appears at</span>
<span class="c1"># dimension 0 of all outputs.</span>
<span class="c1"># The return is (output, out_dims) -- output is a tuple of 3 Tensors</span>
<span class="c1"># and out_dims is a Tuple of 3 Optional[int]</span>
<span class="k">return</span> <span class="n">NumpySort</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span> <span class="o">+</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">NumpyTake</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">autograd</span><span class="o">.</span><span class="n">Function</span><span class="p">):</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">,</span> <span class="n">dim</span><span class="p">):</span>
<span class="n">device</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">device</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">to_numpy</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">ind</span> <span class="o">=</span> <span class="n">to_numpy</span><span class="p">(</span><span class="n">ind</span><span class="p">)</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">take_along_axis</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">dim</span><span class="p">),</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">setup_context</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">output</span><span class="p">):</span>
<span class="n">x</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">,</span> <span class="n">dim</span> <span class="o">=</span> <span class="n">inputs</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">save_for_backward</span><span class="p">(</span><span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">)</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">dim</span> <span class="o">=</span> <span class="n">dim</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">grad_output</span><span class="p">):</span>
<span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">saved_tensors</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">NumpyTake</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">grad_output</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">ctx</span><span class="o">.</span><span class="n">dim</span><span class="p">)</span>
<span class="k">return</span> <span class="n">result</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">vmap</span><span class="p">(</span><span class="n">info</span><span class="p">,</span> <span class="n">in_dims</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">,</span> <span class="n">dim</span><span class="p">):</span>
<span class="n">x_bdim</span><span class="p">,</span> <span class="n">ind_bdim</span><span class="p">,</span> <span class="n">ind_inv_bdim</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">in_dims</span>
<span class="c1"># The strategy is: expand {x, ind, ind_inv} to all have the dimension</span>
<span class="c1"># being vmapped over.</span>
<span class="c1"># Then, call back into NumpyTake(expanded_x, expanded_ind, expanded_ind_inv, new_dim).</span>
<span class="c1"># Handle negative dims by wrapping them to be positive</span>
<span class="n">logical_dim</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="k">if</span> <span class="n">x_bdim</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">x_bdim</span> <span class="o">-</span> <span class="mi">1</span>
<span class="n">dim</span> <span class="o">=</span> <span class="n">dim</span> <span class="k">if</span> <span class="n">dim</span> <span class="o">>=</span> <span class="mi">0</span> <span class="k">else</span> <span class="n">dim</span> <span class="o">+</span> <span class="n">logical_dim</span>
<span class="k">def</span> <span class="nf">maybe_expand_bdim_at_front</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">x_bdim</span><span class="p">):</span>
<span class="k">if</span> <span class="n">x_bdim</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">expand</span><span class="p">(</span><span class="n">info</span><span class="o">.</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">*</span><span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">movedim</span><span class="p">(</span><span class="n">x_bdim</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="c1"># If the Tensor doesn't have the dimension being vmapped over,</span>
<span class="c1"># expand it out. Otherwise, move it to the front of the Tensor</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">maybe_expand_bdim_at_front</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">x_bdim</span><span class="p">)</span>
<span class="n">ind</span> <span class="o">=</span> <span class="n">maybe_expand_bdim_at_front</span><span class="p">(</span><span class="n">ind</span><span class="p">,</span> <span class="n">ind_bdim</span><span class="p">)</span>
<span class="n">ind_inv</span> <span class="o">=</span> <span class="n">maybe_expand_bdim_at_front</span><span class="p">(</span><span class="n">ind_inv</span><span class="p">,</span> <span class="n">ind_inv_bdim</span><span class="p">)</span>
<span class="c1"># The return is a tuple (output, out_dims). Since output is a Tensor,</span>
<span class="c1"># then out_dims is an Optional[int] (instead of being a Tuple).</span>
<span class="k">return</span> <span class="n">NumpyTake</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">ind</span><span class="p">,</span> <span class="n">ind_inv</span><span class="p">,</span> <span class="n">dim</span> <span class="o">+</span> <span class="mi">1</span><span class="p">),</span> <span class="mi">0</span>
<span class="k">def</span> <span class="nf">numpy_sort</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">):</span>
<span class="n">result</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">NumpySort</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="p">)</span>
<span class="k">return</span> <span class="n">result</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">vmap</span><span class="p">(</span><span class="n">numpy_sort</span><span class="p">)(</span><span class="n">x</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">torch</span><span class="o">.</span><span class="n">allclose</span><span class="p">(</span><span class="n">result</span><span class="p">,</span> <span class="n">numpy_sort</span><span class="p">(</span><span class="n">result</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
</pre></div>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>The vmap staticmethod should aim to preserve the semantics of the
entire <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">Function</span></code></a>. That is, (pseudocode) <code class="docutils literal notranslate"><span class="pre">grad(vmap(MyFunc))</span></code>
should be replaceable with a <code class="docutils literal notranslate"><span class="pre">grad(map(MyFunc))</span></code>.</p>
<p>If your autograd.Function has any custom behavior in the backward pass, please
keep this in mind.</p>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>It is a legitimate use case to write a custom vmap staticmethod for a
<a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">Function</span></code></a> that PyTorch is able to generate a vmap
rule for via <code class="docutils literal notranslate"><span class="pre">generate_vmap_rule=True</span></code>. You may wish to do this if the
generated vmap rule doesn’t have the semantics you’re looking for.</p>
</div>
</section>
</section>
<section id="torch-func-jvp-support">
<h2><a class="reference internal" href="../generated/torch.func.jvp.html#torch.func.jvp" title="torch.func.jvp"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.func.jvp()</span></code></a> Support<a class="headerlink" href="#torch-func-jvp-support" title="Permalink to this heading">¶</a></h2>
<p>To support forward-mode AD, a <a class="reference internal" href="../autograd.html#torch.autograd.Function" title="torch.autograd.Function"><code class="xref py py-class docutils literal notranslate"><span class="pre">torch.autograd.Function</span></code></a> must have a <a class="reference internal" href="../generated/torch.autograd.Function.jvp.html#torch.autograd.Function.jvp" title="torch.autograd.Function.jvp"><code class="xref py py-meth docutils literal notranslate"><span class="pre">jvp()</span></code></a> staticmethod.
Please see <a class="reference internal" href="extending.html#forward-ad-autograd-function"><span class="std std-ref">Forward mode AD</span></a> for details.</p>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="faq.html" class="btn btn-neutral float-right" title="Frequently Asked Questions" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="extending.html" class="btn btn-neutral" title="Extending PyTorch" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2023, PyTorch Contributors.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
<script>
var match = window.location.href.match(/\/_[a-zA-Z0-9_]*.html|_dynamo/gi);
var url = window.location.href.lastIndexOf(match[match.length-1]);
if (url)
{
var div = '<div class="admonition note"><p class="admonition-title">Note</p><p><i class="fa fa-exclamation-circle" aria-hidden="true"> </i> This page describes an internal API which is not intended to be used outside of the PyTorch codebase and can be modified or removed without notice.</p></div>'
document.getElementById("pytorch-article").insertAdjacentHTML('afterBegin', div)
}
</script>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Extending torch.func with autograd.Function</a><ul>
<li><a class="reference internal" href="#basic-usage">Basic Usage</a><ul>
<li><a class="reference internal" href="#example-1-autograd-function-calls-into-another-system">Example 1: autograd.Function calls into another system</a></li>
<li><a class="reference internal" href="#example-2-autograd-function-specifies-custom-gradient-rules">Example 2: autograd.Function specifies custom gradient rules</a></li>
<li><a class="reference internal" href="#limitations-and-gotchas">Limitations and gotchas</a></li>
</ul>
</li>
<li><a class="reference internal" href="#torch-vmap-support"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.vmap()</span></code> Support</a><ul>
<li><a class="reference internal" href="#automatically-generate-a-vmap-rule">Automatically generate a vmap rule</a></li>
<li><a class="reference internal" href="#defining-the-vmap-staticmethod">Defining the vmap staticmethod</a></li>
</ul>
</li>
<li><a class="reference internal" href="#torch-func-jvp-support"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.func.jvp()</span></code> Support</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>