forked from pytorch/pytorch.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserialization.html
1123 lines (914 loc) · 80 KB
/
serialization.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Serialization semantics — PyTorch 2.0 documentation</title>
<link rel="canonical" href="https://pytorch.org/docs/stable/notes/serialization.html"/>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/copybutton.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/katex-math.css" type="text/css" />
<link rel="stylesheet" href="../_static/sphinx-dropdown.css" type="text/css" />
<link rel="stylesheet" href="../_static/panels-bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/jit.css" type="text/css" />
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Windows FAQ" href="windows.html" />
<link rel="prev" title="Reproducibility" href="randomness.html" />
<!-- Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-117752657-2"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-117752657-2');
</script>
<!-- End Google Analytics -->
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>
<a href="https://pytorch.org/blog/">Blog</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li class="active docs-active">
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-orange-arrow">
Docs
</a>
<div class="resources-dropdown-menu">
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/docs/stable/index.html">
<span class="dropdown-title">PyTorch</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/audio/stable/index.html">
<span class="dropdown-title">torchaudio</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/text/stable/index.html">
<span class="dropdown-title">torchtext</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/vision/stable/index.html">
<span class="dropdown-title">torchvision</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torcharrow">
<span class="dropdown-title">torcharrow</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/data">
<span class="dropdown-title">TorchData</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchrec">
<span class="dropdown-title">TorchRec</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/serve/">
<span class="dropdown-title">TorchServe</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/torchx/">
<span class="dropdown-title">TorchX</span>
<p></p>
</a>
<a class="doc-dropdown-option nav-dropdown-item" href="https://pytorch.org/xla">
<span class="dropdown-title">PyTorch on XLA Devices</span>
<p></p>
</a>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="resource-option with-down-arrow">
Resources
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/features">
<span class="dropdown-title">About</span>
<p>Learn about PyTorch’s features and capabilities</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/foundation">
<span class="dropdown-title">PyTorch Foundation</span>
<p>Learn about the PyTorch foundation</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/#community-module">
<span class="dropdown-title">Community</span>
<p>Join the PyTorch developer community to contribute, learn, and get your questions answered.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/community-stories">
<span class="dropdown-title">Community Stories</span>
<p>Learn how our community solves real, everyday machine learning problems with PyTorch.</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/resources">
<span class="dropdown-title">Developer Resources</span>
<p>Find resources and get questions answered</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/events">
<span class="dropdown-title">Events</span>
<p>Find events, webinars, and podcasts</p>
</a>
<a class="nav-dropdown-item" href="https://discuss.pytorch.org/" target="_blank">
<span class="dropdown-title">Forums</span>
<p>A place to discuss PyTorch code, issues, install, research</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/hub">
<span class="dropdown-title">Models (Beta)</span>
<p>Discover, publish, and reuse pre-trained models</p>
</a>
</div>
</div>
</li>
<li>
<a href="https://github.com/pytorch/pytorch">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
<a href='https://pytorch.org/docs/versions.html'>2.0 ▼</a>
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Community</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../community/build_ci_governance.html">PyTorch Governance | Build + CI</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/contribution_guide.html">PyTorch Contribution Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/design.html">PyTorch Design Philosophy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/governance.html">PyTorch Governance | Mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../community/persons_of_interest.html">PyTorch Governance | Maintainers</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="amp_examples.html">CUDA Automatic Mixed Precision examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="autograd.html">Autograd mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="broadcasting.html">Broadcasting semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="cpu_threading_torchscript_inference.html">CPU threading and TorchScript inference</a></li>
<li class="toctree-l1"><a class="reference internal" href="cuda.html">CUDA semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="ddp.html">Distributed Data Parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="extending.html">Extending PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="extending.func.html">Extending torch.func with autograd.Function</a></li>
<li class="toctree-l1"><a class="reference internal" href="faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="gradcheck.html">Gradcheck mechanics</a></li>
<li class="toctree-l1"><a class="reference internal" href="hip.html">HIP (ROCm) semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="large_scale_deployments.html">Features for large-scale deployments</a></li>
<li class="toctree-l1"><a class="reference internal" href="modules.html">Modules</a></li>
<li class="toctree-l1"><a class="reference internal" href="mps.html">MPS backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="multiprocessing.html">Multiprocessing best practices</a></li>
<li class="toctree-l1"><a class="reference internal" href="numerical_accuracy.html">Numerical accuracy</a></li>
<li class="toctree-l1"><a class="reference internal" href="randomness.html">Reproducibility</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Serialization semantics</a></li>
<li class="toctree-l1"><a class="reference internal" href="windows.html">Windows FAQ</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">torch.compile</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/index.html">TorchDynamo Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/installation.html">Installing TorchDynamo</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/get-started.html">Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/guards-overview.html">Guards Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/custom-backends.html">Custom Backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/deep-dive.html">TorchDynamo Deeper Dive</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/troubleshooting.html">TorchDynamo Troubleshooting</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dynamo/faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ir.html">IRs</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Language Bindings</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../cpp_index.html">C++</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/javadoc/">Javadoc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../deploy.html">torch::deploy</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Python API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../torch.html">torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.html">torch.nn</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.functional.html">torch.nn.functional</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensors.html">torch.Tensor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensor_attributes.html">Tensor Attributes</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensor_view.html">Tensor Views</a></li>
<li class="toctree-l1"><a class="reference internal" href="../amp.html">torch.amp</a></li>
<li class="toctree-l1"><a class="reference internal" href="../autograd.html">torch.autograd</a></li>
<li class="toctree-l1"><a class="reference internal" href="../library.html">torch.library</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cuda.html">torch.cuda</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mps.html">torch.mps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../backends.html">torch.backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.html">torch.distributed</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.algorithms.join.html">torch.distributed.algorithms.join</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.elastic.html">torch.distributed.elastic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fsdp.html">torch.distributed.fsdp</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.optim.html">torch.distributed.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.tensor.parallel.html">torch.distributed.tensor.parallel</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributed.checkpoint.html">torch.distributed.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../distributions.html">torch.distributions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../_dynamo.html">torch._dynamo</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fft.html">torch.fft</a></li>
<li class="toctree-l1"><a class="reference internal" href="../func.html">torch.func</a></li>
<li class="toctree-l1"><a class="reference internal" href="../futures.html">torch.futures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../fx.html">torch.fx</a></li>
<li class="toctree-l1"><a class="reference internal" href="../hub.html">torch.hub</a></li>
<li class="toctree-l1"><a class="reference internal" href="../jit.html">torch.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../linalg.html">torch.linalg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../monitor.html">torch.monitor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../signal.html">torch.signal</a></li>
<li class="toctree-l1"><a class="reference internal" href="../special.html">torch.special</a></li>
<li class="toctree-l1"><a class="reference internal" href="../torch.overrides.html">torch.overrides</a></li>
<li class="toctree-l1"><a class="reference internal" href="../package.html">torch.package</a></li>
<li class="toctree-l1"><a class="reference internal" href="../profiler.html">torch.profiler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nn.init.html">torch.nn.init</a></li>
<li class="toctree-l1"><a class="reference internal" href="../onnx.html">torch.onnx</a></li>
<li class="toctree-l1"><a class="reference internal" href="../onnx_diagnostics.html">torch.onnx diagnostics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../optim.html">torch.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../complex_numbers.html">Complex Numbers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ddp_comm_hooks.html">DDP Communication Hooks</a></li>
<li class="toctree-l1"><a class="reference internal" href="../pipeline.html">Pipeline Parallelism</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../rpc.html">Distributed RPC Framework</a></li>
<li class="toctree-l1"><a class="reference internal" href="../random.html">torch.random</a></li>
<li class="toctree-l1"><a class="reference internal" href="../masked.html">torch.masked</a></li>
<li class="toctree-l1"><a class="reference internal" href="../nested.html">torch.nested</a></li>
<li class="toctree-l1"><a class="reference internal" href="../sparse.html">torch.sparse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../storage.html">torch.Storage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../testing.html">torch.testing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../benchmark_utils.html">torch.utils.benchmark</a></li>
<li class="toctree-l1"><a class="reference internal" href="../bottleneck.html">torch.utils.bottleneck</a></li>
<li class="toctree-l1"><a class="reference internal" href="../checkpoint.html">torch.utils.checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cpp_extension.html">torch.utils.cpp_extension</a></li>
<li class="toctree-l1"><a class="reference internal" href="../data.html">torch.utils.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../jit_utils.html">torch.utils.jit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dlpack.html">torch.utils.dlpack</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mobile_optimizer.html">torch.utils.mobile_optimizer</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_zoo.html">torch.utils.model_zoo</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tensorboard.html">torch.utils.tensorboard</a></li>
<li class="toctree-l1"><a class="reference internal" href="../type_info.html">Type Info</a></li>
<li class="toctree-l1"><a class="reference internal" href="../named_tensor.html">Named Tensors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../name_inference.html">Named Tensors operator coverage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../config_mod.html">torch.__config__</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Libraries</span></p>
<ul>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/audio/stable">torchaudio</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/data">TorchData</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/torchrec">TorchRec</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/serve">TorchServe</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/text/stable">torchtext</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/vision/stable">torchvision</a></li>
<li class="toctree-l1"><a class="reference external" href="https://pytorch.org/xla/">PyTorch on XLA Devices</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../index.html">
Docs
</a> >
</li>
<li>Serialization semantics</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/notes/serialization.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="serialization-semantics">
<h1><a class="toc-backref" href="#id1" role="doc-backlink">Serialization semantics</a><a class="headerlink" href="#serialization-semantics" title="Permalink to this heading">¶</a></h1>
<p>This note describes how you can save and load PyTorch tensors and module states
in Python, and how to serialize Python modules so they can be loaded in C++.</p>
<nav class="contents" id="table-of-contents">
<p class="topic-title">Table of Contents</p>
<ul class="simple">
<li><p><a class="reference internal" href="#serialization-semantics" id="id1">Serialization semantics</a></p>
<ul>
<li><p><a class="reference internal" href="#saving-and-loading-tensors" id="id2">Saving and loading tensors</a></p></li>
<li><p><a class="reference internal" href="#saving-and-loading-tensors-preserves-views" id="id3">Saving and loading tensors preserves views</a></p></li>
<li><p><a class="reference internal" href="#saving-and-loading-torch-nn-modules" id="id4">Saving and loading torch.nn.Modules</a></p></li>
<li><p><a class="reference internal" href="#serializing-torch-nn-modules-and-loading-them-in-c" id="id5">Serializing torch.nn.Modules and loading them in C++</a></p></li>
<li><p><a class="reference internal" href="#saving-and-loading-scriptmodules-across-pytorch-versions" id="id6">Saving and loading ScriptModules across PyTorch versions</a></p>
<ul>
<li><p><a class="reference internal" href="#torch-div-performing-integer-division" id="id7">torch.div performing integer division</a></p></li>
<li><p><a class="reference internal" href="#torch-full-always-inferring-a-float-dtype" id="id8">torch.full always inferring a float dtype</a></p></li>
</ul>
</li>
</ul>
</li>
</ul>
</nav>
<section id="saving-and-loading-tensors">
<span id="saving-loading-tensors"></span><h2><a class="toc-backref" href="#id2" role="doc-backlink">Saving and loading tensors</a><a class="headerlink" href="#saving-and-loading-tensors" title="Permalink to this heading">¶</a></h2>
<p><a class="reference internal" href="../generated/torch.save.html#torch.save" title="torch.save"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.save()</span></code></a> and <a class="reference internal" href="../generated/torch.load.html#torch.load" title="torch.load"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.load()</span></code></a> let you easily save and load tensors:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">t</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">])</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">t</span><span class="p">,</span> <span class="s1">'tensor.pt'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">'tensor.pt'</span><span class="p">)</span>
<span class="go">tensor([1., 2.])</span>
</pre></div>
</div>
<p>By convention, PyTorch files are typically written with a ‘.pt’ or ‘.pth’ extension.</p>
<p><a class="reference internal" href="../generated/torch.save.html#torch.save" title="torch.save"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.save()</span></code></a> and <a class="reference internal" href="../generated/torch.load.html#torch.load" title="torch.load"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.load()</span></code></a> use Python’s pickle by default,
so you can also save multiple tensors as part of Python objects like tuples,
lists, and dicts:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'a'</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">2.</span><span class="p">]),</span> <span class="s1">'b'</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mf">3.</span><span class="p">,</span> <span class="mf">4.</span><span class="p">])}</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">d</span><span class="p">,</span> <span class="s1">'tensor_dict.pt'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">'tensor_dict.pt'</span><span class="p">)</span>
<span class="go">{'a': tensor([1., 2.]), 'b': tensor([3., 4.])}</span>
</pre></div>
</div>
<p>Custom data structures that include PyTorch tensors can also be saved if the
data structure is pickle-able.</p>
</section>
<section id="saving-and-loading-tensors-preserves-views">
<span id="preserve-storage-sharing"></span><h2><a class="toc-backref" href="#id3" role="doc-backlink">Saving and loading tensors preserves views</a><a class="headerlink" href="#saving-and-loading-tensors-preserves-views" title="Permalink to this heading">¶</a></h2>
<p>Saving tensors preserves their view relationships:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">numbers</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">evens</span> <span class="o">=</span> <span class="n">numbers</span><span class="p">[</span><span class="mi">1</span><span class="p">::</span><span class="mi">2</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">save</span><span class="p">([</span><span class="n">numbers</span><span class="p">,</span> <span class="n">evens</span><span class="p">],</span> <span class="s1">'tensors.pt'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">loaded_numbers</span><span class="p">,</span> <span class="n">loaded_evens</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">'tensors.pt'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">loaded_evens</span> <span class="o">*=</span> <span class="mi">2</span>
<span class="gp">>>> </span><span class="n">loaded_numbers</span>
<span class="go">tensor([ 1, 4, 3, 8, 5, 12, 7, 16, 9])</span>
</pre></div>
</div>
<p>Behind the scenes, these tensors share the same “storage.” See
<a class="reference external" href="https://pytorch.org/docs/master/tensor_view.html">Tensor Views</a> for more
on views and storage.</p>
<p>When PyTorch saves tensors it saves their storage objects and tensor
metadata separately. This is an implementation detail that may change in the
future, but it typically saves space and lets PyTorch easily
reconstruct the view relationships between the loaded tensors. In the above
snippet, for example, only a single storage is written to ‘tensors.pt’.</p>
<p>In some cases, however, saving the current storage objects may be unnecessary
and create prohibitively large files. In the following snippet a storage much
larger than the saved tensor is written to a file:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">large</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1000</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">small</span> <span class="o">=</span> <span class="n">large</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="mi">5</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">small</span><span class="p">,</span> <span class="s1">'small.pt'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">loaded_small</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">'small.pt'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">loaded_small</span><span class="o">.</span><span class="n">storage</span><span class="p">()</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="go">999</span>
</pre></div>
</div>
<p>Instead of saving only the five values in the <cite>small</cite> tensor to ‘small.pt,’
the 999 values in the storage it shares with <cite>large</cite> were saved and loaded.</p>
<p>When saving tensors with fewer elements than their storage objects, the size of
the saved file can be reduced by first cloning the tensors. Cloning a tensor
produces a new tensor with a new storage object containing only the values
in the tensor:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">large</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1000</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">small</span> <span class="o">=</span> <span class="n">large</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="mi">5</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">small</span><span class="o">.</span><span class="n">clone</span><span class="p">(),</span> <span class="s1">'small.pt'</span><span class="p">)</span> <span class="c1"># saves a clone of small</span>
<span class="gp">>>> </span><span class="n">loaded_small</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">'small.pt'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">loaded_small</span><span class="o">.</span><span class="n">storage</span><span class="p">()</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="go">5</span>
</pre></div>
</div>
<p>Since the cloned tensors are independent of each other, however, they have
none of the view relationships the original tensors did. If both file size and
view relationships are important when saving tensors smaller than their
storage objects, then care must be taken to construct new tensors that minimize
the size of their storage objects but still have the desired view relationships
before saving.</p>
</section>
<section id="saving-and-loading-torch-nn-modules">
<span id="saving-loading-python-modules"></span><h2><a class="toc-backref" href="#id4" role="doc-backlink">Saving and loading torch.nn.Modules</a><a class="headerlink" href="#saving-and-loading-torch-nn-modules" title="Permalink to this heading">¶</a></h2>
<p>See also: <a class="reference external" href="https://pytorch.org/tutorials/beginner/saving_loading_models.html">Tutorial: Saving and loading modules</a></p>
<p>In PyTorch, a module’s state is frequently serialized using a ‘state dict.’
A module’s state dict contains all of its parameters and persistent buffers:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">bn</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm1d</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">track_running_stats</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">bn</span><span class="o">.</span><span class="n">named_parameters</span><span class="p">())</span>
<span class="go">[('weight', Parameter containing: tensor([1., 1., 1.], requires_grad=True)),</span>
<span class="go"> ('bias', Parameter containing: tensor([0., 0., 0.], requires_grad=True))]</span>
<span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">bn</span><span class="o">.</span><span class="n">named_buffers</span><span class="p">())</span>
<span class="go">[('running_mean', tensor([0., 0., 0.])),</span>
<span class="go"> ('running_var', tensor([1., 1., 1.])),</span>
<span class="go"> ('num_batches_tracked', tensor(0))]</span>
<span class="gp">>>> </span><span class="n">bn</span><span class="o">.</span><span class="n">state_dict</span><span class="p">()</span>
<span class="go">OrderedDict([('weight', tensor([1., 1., 1.])),</span>
<span class="go"> ('bias', tensor([0., 0., 0.])),</span>
<span class="go"> ('running_mean', tensor([0., 0., 0.])),</span>
<span class="go"> ('running_var', tensor([1., 1., 1.])),</span>
<span class="go"> ('num_batches_tracked', tensor(0))])</span>
</pre></div>
</div>
<p>Instead of saving a module directly, for compatibility reasons it is recommended
to instead save only its state dict. Python modules even have a function,
<a class="reference internal" href="../generated/torch.nn.Module.html#torch.nn.Module.load_state_dict" title="torch.nn.Module.load_state_dict"><code class="xref py py-meth docutils literal notranslate"><span class="pre">load_state_dict()</span></code></a>, to restore their states from a state dict:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">bn</span><span class="o">.</span><span class="n">state_dict</span><span class="p">(),</span> <span class="s1">'bn.pt'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">bn_state_dict</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">'bn.pt'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">new_bn</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm1d</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">track_running_stats</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">new_bn</span><span class="o">.</span><span class="n">load_state_dict</span><span class="p">(</span><span class="n">bn_state_dict</span><span class="p">)</span>
<span class="go"><All keys matched successfully></span>
</pre></div>
</div>
<p>Note that the state dict is first loaded from its file with <a class="reference internal" href="../generated/torch.load.html#torch.load" title="torch.load"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.load()</span></code></a>
and the state then restored with <a class="reference internal" href="../generated/torch.nn.Module.html#torch.nn.Module.load_state_dict" title="torch.nn.Module.load_state_dict"><code class="xref py py-meth docutils literal notranslate"><span class="pre">load_state_dict()</span></code></a>.</p>
<p>Even custom modules and modules containing other modules have state dicts and
can use this pattern:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="c1"># A module with two linear layers</span>
<span class="o">>>></span> <span class="k">class</span> <span class="nc">MyModule</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">l0</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">l1</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
<span class="n">out0</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">l0</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="n">out0_relu</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">functional</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">out0</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">l1</span><span class="p">(</span><span class="n">out0_relu</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">m</span> <span class="o">=</span> <span class="n">MyModule</span><span class="p">()</span>
<span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">state_dict</span><span class="p">()</span>
<span class="n">OrderedDict</span><span class="p">([(</span><span class="s1">'l0.weight'</span><span class="p">,</span> <span class="n">tensor</span><span class="p">([[</span> <span class="mf">0.1400</span><span class="p">,</span> <span class="mf">0.4563</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.0271</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.4406</span><span class="p">],</span>
<span class="p">[</span><span class="o">-</span><span class="mf">0.3289</span><span class="p">,</span> <span class="mf">0.2827</span><span class="p">,</span> <span class="mf">0.4588</span><span class="p">,</span> <span class="mf">0.2031</span><span class="p">]])),</span>
<span class="p">(</span><span class="s1">'l0.bias'</span><span class="p">,</span> <span class="n">tensor</span><span class="p">([</span> <span class="mf">0.0300</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.1316</span><span class="p">])),</span>
<span class="p">(</span><span class="s1">'l1.weight'</span><span class="p">,</span> <span class="n">tensor</span><span class="p">([[</span><span class="mf">0.6533</span><span class="p">,</span> <span class="mf">0.3413</span><span class="p">]])),</span>
<span class="p">(</span><span class="s1">'l1.bias'</span><span class="p">,</span> <span class="n">tensor</span><span class="p">([</span><span class="o">-</span><span class="mf">0.1112</span><span class="p">]))])</span>
<span class="o">>>></span> <span class="n">torch</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">state_dict</span><span class="p">(),</span> <span class="s1">'mymodule.pt'</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">m_state_dict</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">'mymodule.pt'</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">new_m</span> <span class="o">=</span> <span class="n">MyModule</span><span class="p">()</span>
<span class="o">>>></span> <span class="n">new_m</span><span class="o">.</span><span class="n">load_state_dict</span><span class="p">(</span><span class="n">m_state_dict</span><span class="p">)</span>
<span class="o"><</span><span class="n">All</span> <span class="n">keys</span> <span class="n">matched</span> <span class="n">successfully</span><span class="o">></span>
</pre></div>
</div>
</section>
<section id="serializing-torch-nn-modules-and-loading-them-in-c">
<span id="serializing-python-modules"></span><h2><a class="toc-backref" href="#id5" role="doc-backlink">Serializing torch.nn.Modules and loading them in C++</a><a class="headerlink" href="#serializing-torch-nn-modules-and-loading-them-in-c" title="Permalink to this heading">¶</a></h2>
<p>See also: <a class="reference external" href="https://pytorch.org/tutorials/advanced/cpp_export.html">Tutorial: Loading a TorchScript Model in C++</a></p>
<p>ScriptModules can be serialized as a TorchScript program and loaded
using <a class="reference internal" href="../generated/torch.jit.load.html#torch.jit.load" title="torch.jit.load"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.jit.load()</span></code></a>.
This serialization encodes all the modules’ methods, submodules, parameters,
and attributes, and it allows the serialized program to be loaded in C++
(i.e. without Python).</p>
<p>The distinction between <a class="reference internal" href="../generated/torch.jit.save.html#torch.jit.save" title="torch.jit.save"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.jit.save()</span></code></a> and <a class="reference internal" href="../generated/torch.save.html#torch.save" title="torch.save"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.save()</span></code></a> may not
be immediately clear. <a class="reference internal" href="../generated/torch.save.html#torch.save" title="torch.save"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.save()</span></code></a> saves Python objects with pickle.
This is especially useful for prototyping, researching, and training.
<a class="reference internal" href="../generated/torch.jit.save.html#torch.jit.save" title="torch.jit.save"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.jit.save()</span></code></a>, on the other hand, serializes ScriptModules to a format
that can be loaded in Python or C++. This is useful when saving and loading C++
modules or for running modules trained in Python with C++, a common practice
when deploying PyTorch models.</p>
<p>To script, serialize and load a module in Python:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">scripted_module</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">jit</span><span class="o">.</span><span class="n">script</span><span class="p">(</span><span class="n">MyModule</span><span class="p">())</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">jit</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">scripted_module</span><span class="p">,</span> <span class="s1">'mymodule.pt'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">torch</span><span class="o">.</span><span class="n">jit</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">'mymodule.pt'</span><span class="p">)</span>
<span class="go">RecursiveScriptModule( original_name=MyModule</span>
<span class="go"> (l0): RecursiveScriptModule(original_name=Linear)</span>
<span class="go"> (l1): RecursiveScriptModule(original_name=Linear) )</span>
</pre></div>
</div>
<p>Traced modules can also be saved with <a class="reference internal" href="../generated/torch.jit.save.html#torch.jit.save" title="torch.jit.save"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.jit.save()</span></code></a>, with the caveat
that only the traced code path is serialized. The following example demonstrates
this:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="c1"># A module with control flow</span>
<span class="o">>>></span> <span class="k">class</span> <span class="nc">ControlFlowModule</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">l0</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">l1</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="o">></span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">out0</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">l0</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="n">out0_relu</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">functional</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">out0</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">l1</span><span class="p">(</span><span class="n">out0_relu</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">traced_module</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">jit</span><span class="o">.</span><span class="n">trace</span><span class="p">(</span><span class="n">ControlFlowModule</span><span class="p">(),</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">4</span><span class="p">))</span>
<span class="o">>>></span> <span class="n">torch</span><span class="o">.</span><span class="n">jit</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">traced_module</span><span class="p">,</span> <span class="s1">'controlflowmodule_traced.pt'</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">loaded</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">jit</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">'controlflowmodule_traced.pt'</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">loaded</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">)))</span>
<span class="n">tensor</span><span class="p">([[</span><span class="o">-</span><span class="mf">0.1571</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mf">0.3793</span><span class="p">]],</span> <span class="n">grad_fn</span><span class="o">=<</span><span class="n">AddBackward0</span><span class="o">></span><span class="p">)</span>
<span class="o">>>></span> <span class="n">scripted_module</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">jit</span><span class="o">.</span><span class="n">script</span><span class="p">(</span><span class="n">ControlFlowModule</span><span class="p">(),</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">4</span><span class="p">))</span>
<span class="o">>>></span> <span class="n">torch</span><span class="o">.</span><span class="n">jit</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">scripted_module</span><span class="p">,</span> <span class="s1">'controlflowmodule_scripted.pt'</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">loaded</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">jit</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">'controlflowmodule_scripted.pt'</span><span class="p">)</span>
<span class="o">>></span> <span class="n">loaded</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">))</span>
<span class="n">tensor</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
</pre></div>
</div>
<p>The above module has an if statement that is not triggered by the traced inputs,
and so is not part of the traced module and not serialized with it.
The scripted module, however, contains the if statement and is serialized with it.
See the <a class="reference external" href="https://pytorch.org/docs/stable/jit.html">TorchScript documentation</a>
for more on scripting and tracing.</p>
<p>Finally, to load the module in C++:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">torch</span><span class="p">::</span><span class="n">jit</span><span class="p">::</span><span class="n">script</span><span class="p">::</span><span class="n">Module</span> <span class="n">module</span><span class="p">;</span>
<span class="gp">>>> </span><span class="n">module</span> <span class="o">=</span> <span class="n">torch</span><span class="p">::</span><span class="n">jit</span><span class="p">::</span><span class="n">load</span><span class="p">(</span><span class="s1">'controlflowmodule_scripted.pt'</span><span class="p">);</span>
</pre></div>
</div>
<p>See the <a class="reference external" href="https://pytorch.org/cppdocs/">PyTorch C++ API documentation</a>
for details about how to use PyTorch modules in C++.</p>
</section>
<section id="saving-and-loading-scriptmodules-across-pytorch-versions">
<span id="saving-loading-across-versions"></span><h2><a class="toc-backref" href="#id6" role="doc-backlink">Saving and loading ScriptModules across PyTorch versions</a><a class="headerlink" href="#saving-and-loading-scriptmodules-across-pytorch-versions" title="Permalink to this heading">¶</a></h2>
<p>The PyTorch Team recommends saving and loading modules with the same version of
PyTorch. Older versions of PyTorch may not support newer modules, and newer
versions may have removed or modified older behavior. These changes are
explicitly described in
PyTorch’s <a class="reference external" href="https://github.com/pytorch/pytorch/releases">release notes</a>,
and modules relying on functionality that has changed may need to be updated
to continue working properly. In limited cases, detailed below, PyTorch will
preserve the historic behavior of serialized ScriptModules so they do not require
an update.</p>
<section id="torch-div-performing-integer-division">
<h3><a class="toc-backref" href="#id7" role="doc-backlink">torch.div performing integer division</a><a class="headerlink" href="#torch-div-performing-integer-division" title="Permalink to this heading">¶</a></h3>
<p>In PyTorch 1.5 and earlier <a class="reference internal" href="../generated/torch.div.html#torch.div" title="torch.div"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.div()</span></code></a> would perform floor division when
given two integer inputs:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="c1"># PyTorch 1.5 (and earlier)</span>
<span class="o">>>></span> <span class="n">a</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">b</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">a</span> <span class="o">/</span> <span class="n">b</span>
<span class="n">tensor</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
<p>In PyTorch 1.7, however, <a class="reference internal" href="../generated/torch.div.html#torch.div" title="torch.div"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.div()</span></code></a> will always perform a true division
of its inputs, just like division in Python 3:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="c1"># PyTorch 1.7</span>
<span class="o">>>></span> <span class="n">a</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">b</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">a</span> <span class="o">/</span> <span class="n">b</span>
<span class="n">tensor</span><span class="p">(</span><span class="mf">1.6667</span><span class="p">)</span>
</pre></div>
</div>
<p>The behavior of <a class="reference internal" href="../generated/torch.div.html#torch.div" title="torch.div"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.div()</span></code></a> is preserved in serialized ScriptModules.
That is, ScriptModules serialized with versions of PyTorch before 1.6 will continue
to see <a class="reference internal" href="../generated/torch.div.html#torch.div" title="torch.div"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.div()</span></code></a> perform floor division when given two integer inputs
even when loaded with newer versions of PyTorch. ScriptModules using <a class="reference internal" href="../generated/torch.div.html#torch.div" title="torch.div"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.div()</span></code></a>
and serialized on PyTorch 1.6 and later cannot be loaded in earlier versions of
PyTorch, however, since those earlier versions do not understand the new behavior.</p>
</section>
<section id="torch-full-always-inferring-a-float-dtype">
<h3><a class="toc-backref" href="#id8" role="doc-backlink">torch.full always inferring a float dtype</a><a class="headerlink" href="#torch-full-always-inferring-a-float-dtype" title="Permalink to this heading">¶</a></h3>
<p>In PyTorch 1.5 and earlier <a class="reference internal" href="../generated/torch.full.html#torch.full" title="torch.full"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.full()</span></code></a> always returned a float tensor,
regardless of the fill value it’s given:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="c1"># PyTorch 1.5 and earlier</span>
<span class="o">>>></span> <span class="n">torch</span><span class="o">.</span><span class="n">full</span><span class="p">((</span><span class="mi">3</span><span class="p">,),</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># Note the integer fill value...</span>
<span class="n">tensor</span><span class="p">([</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">])</span> <span class="c1"># ...but float tensor!</span>
</pre></div>
</div>
<p>In PyTorch 1.7, however, <a class="reference internal" href="../generated/torch.full.html#torch.full" title="torch.full"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.full()</span></code></a> will infer the returned tensor’s
dtype from the fill value:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="c1"># PyTorch 1.7</span>
<span class="o">>>></span> <span class="n">torch</span><span class="o">.</span><span class="n">full</span><span class="p">((</span><span class="mi">3</span><span class="p">,),</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">tensor</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
<span class="o">>>></span> <span class="n">torch</span><span class="o">.</span><span class="n">full</span><span class="p">((</span><span class="mi">3</span><span class="p">,),</span> <span class="kc">True</span><span class="p">)</span>
<span class="n">tensor</span><span class="p">([</span><span class="kc">True</span><span class="p">,</span> <span class="kc">True</span><span class="p">,</span> <span class="kc">True</span><span class="p">])</span>
<span class="o">>>></span> <span class="n">torch</span><span class="o">.</span><span class="n">full</span><span class="p">((</span><span class="mi">3</span><span class="p">,),</span> <span class="mf">1.</span><span class="p">)</span>
<span class="n">tensor</span><span class="p">([</span><span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">])</span>
<span class="o">>>></span> <span class="n">torch</span><span class="o">.</span><span class="n">full</span><span class="p">((</span><span class="mi">3</span><span class="p">,),</span> <span class="mi">1</span> <span class="o">+</span> <span class="mi">1</span><span class="n">j</span><span class="p">)</span>
<span class="n">tensor</span><span class="p">([</span><span class="mf">1.</span><span class="o">+</span><span class="mf">1.</span><span class="n">j</span><span class="p">,</span> <span class="mf">1.</span><span class="o">+</span><span class="mf">1.</span><span class="n">j</span><span class="p">,</span> <span class="mf">1.</span><span class="o">+</span><span class="mf">1.</span><span class="n">j</span><span class="p">])</span>
</pre></div>
</div>
<p>The behavior of <a class="reference internal" href="../generated/torch.full.html#torch.full" title="torch.full"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.full()</span></code></a> is preserved in serialized ScriptModules. That is,
ScriptModules serialized with versions of PyTorch before 1.6 will continue to see
torch.full return float tensors by default, even when given bool or
integer fill values. ScriptModules using <a class="reference internal" href="../generated/torch.full.html#torch.full" title="torch.full"><code class="xref py py-func docutils literal notranslate"><span class="pre">torch.full()</span></code></a> and serialized on PyTorch 1.6
and later cannot be loaded in earlier versions of PyTorch, however, since those
earlier versions do not understand the new behavior.</p>
</section>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="windows.html" class="btn btn-neutral float-right" title="Windows FAQ" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="randomness.html" class="btn btn-neutral" title="Reproducibility" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2023, PyTorch Contributors.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
<script>
var match = window.location.href.match(/\/_[a-zA-Z0-9_]*.html|_dynamo/gi);
var url = window.location.href.lastIndexOf(match[match.length-1]);
if (url)
{
var div = '<div class="admonition note"><p class="admonition-title">Note</p><p><i class="fa fa-exclamation-circle" aria-hidden="true"> </i> This page describes an internal API which is not intended to be used outside of the PyTorch codebase and can be modified or removed without notice.</p></div>'
document.getElementById("pytorch-article").insertAdjacentHTML('afterBegin', div)
}
</script>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Serialization semantics</a><ul>
<li><a class="reference internal" href="#saving-and-loading-tensors">Saving and loading tensors</a></li>
<li><a class="reference internal" href="#saving-and-loading-tensors-preserves-views">Saving and loading tensors preserves views</a></li>
<li><a class="reference internal" href="#saving-and-loading-torch-nn-modules">Saving and loading torch.nn.Modules</a></li>
<li><a class="reference internal" href="#serializing-torch-nn-modules-and-loading-them-in-c">Serializing torch.nn.Modules and loading them in C++</a></li>
<li><a class="reference internal" href="#saving-and-loading-scriptmodules-across-pytorch-versions">Saving and loading ScriptModules across PyTorch versions</a><ul>
<li><a class="reference internal" href="#torch-div-performing-integer-division">torch.div performing integer division</a></li>
<li><a class="reference internal" href="#torch-full-always-inferring-a-float-dtype">torch.full always inferring a float dtype</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/clipboard.min.js"></script>
<script src="../_static/copybutton.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<script script type="text/javascript">
var collapsedSections = ['Developer Notes', 'Language Bindings', 'Libraries', 'Community'];
</script>
<img height="1" width="1" style="border-style:none;" alt="" src="https://www.googleadservices.com/pagead/conversion/795629140/?label=txkmCPmdtosBENSssfsC&guid=ON&script=0"/>
<!-- Begin Footer -->
<div class="container-fluid docs-tutorials-resources" id="docs-tutorials-resources">
<div class="container">
<div class="row">
<div class="col-md-4 text-center">
<h2>Docs</h2>
<p>Access comprehensive developer documentation for PyTorch</p>
<a class="with-right-arrow" href="https://pytorch.org/docs/stable/index.html">View Docs</a>
</div>
<div class="col-md-4 text-center">
<h2>Tutorials</h2>
<p>Get in-depth tutorials for beginners and advanced developers</p>
<a class="with-right-arrow" href="https://pytorch.org/tutorials">View Tutorials</a>
</div>
<div class="col-md-4 text-center">
<h2>Resources</h2>
<p>Find development resources and get your questions answered</p>
<a class="with-right-arrow" href="https://pytorch.org/resources">View Resources</a>
</div>
</div>
</div>
</div>
<footer class="site-footer">
<div class="container footer-container">
<div class="footer-logo-wrapper">
<a href="https://pytorch.org/" class="footer-logo"></a>
</div>
<div class="footer-links-wrapper">
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/">PyTorch</a></li>
<li><a href="https://pytorch.org/get-started">Get Started</a></li>
<li><a href="https://pytorch.org/features">Features</a></li>
<li><a href="https://pytorch.org/ecosystem">Ecosystem</a></li>
<li><a href="https://pytorch.org/blog/">Blog</a></li>
<li><a href="https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md">Contributing</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/resources">Resources</a></li>
<li><a href="https://pytorch.org/tutorials">Tutorials</a></li>
<li><a href="https://pytorch.org/docs/stable/index.html">Docs</a></li>
<li><a href="https://discuss.pytorch.org" target="_blank">Discuss</a></li>
<li><a href="https://github.com/pytorch/pytorch/issues" target="_blank">Github Issues</a></li>
<li><a href="https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf" target="_blank">Brand Guidelines</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title">Stay up to date</li>
<li><a href="https://www.facebook.com/pytorch" target="_blank">Facebook</a></li>
<li><a href="https://twitter.com/pytorch" target="_blank">Twitter</a></li>
<li><a href="https://www.youtube.com/pytorch" target="_blank">YouTube</a></li>
<li><a href="https://www.linkedin.com/company/pytorch" target="_blank">LinkedIn</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title">PyTorch Podcasts</li>
<li><a href="https://open.spotify.com/show/6UzHKeiy368jKfQMKKvJY5" target="_blank">Spotify</a></li>
<li><a href="https://podcasts.apple.com/us/podcast/pytorch-developer-podcast/id1566080008" target="_blank">Apple</a></li>
<li><a href="https://www.google.com/podcasts?feed=aHR0cHM6Ly9mZWVkcy5zaW1wbGVjYXN0LmNvbS9PQjVGa0lsOA%3D%3D" target="_blank">Google</a></li>
<li><a href="https://music.amazon.com/podcasts/7a4e6f0e-26c2-49e9-a478-41bd244197d0/PyTorch-Developer-Podcast?" target="_blank">Amazon</a></li>
</ul>
</div>
</div>
<div class="privacy-policy">
<ul>
<li class="privacy-policy-links"><a href="https://www.linuxfoundation.org/terms/" target="_blank">Terms</a></li>
<li class="privacy-policy-links">|</li>
<li class="privacy-policy-links"><a href="https://www.linuxfoundation.org/privacy-policy/" target="_blank">Privacy</a></li>
</ul>
</div>
<div class="copyright">
<p>© Copyright The Linux Foundation. The PyTorch Foundation is a project of The Linux Foundation.
For web site terms of use, trademark policy and other policies applicable to The PyTorch Foundation please see
<a href="www.linuxfoundation.org/policies/">www.linuxfoundation.org/policies/</a>. The PyTorch Foundation supports the PyTorch open source
project, which has been established as PyTorch Project a Series of LF Projects, LLC. For policies applicable to the PyTorch Project a Series of LF Projects, LLC,
please see <a href="www.lfprojects.org/policies/">www.lfprojects.org/policies/</a>.</p>
</div>
</div>
</footer>
<div class="cookie-banner-wrapper">
<div class="container">
<p class="gdpr-notice">To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: <a href="https://www.facebook.com/policies/cookies/">Cookies Policy</a>.</p>
<img class="close-button" src="../_static/images/pytorch-x.svg">
</div>
</div>
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem">Ecosystem</a>
</li>
<li>
<a href="https://pytorch.org/mobile">Mobile</a>
</li>
<li>