Skip to content

web-logs2/sqlglot-16

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SQLGlot

SQLGlot is a no dependency Python SQL parser and transpiler. It can be used to format SQL or translate between different dialects like Presto, Spark, and Hive. It aims to read a wide variety of SQL inputs and output syntatically correct SQL in the targeted dialects.

It is currently the fastest Python SQL parser.

You can easily customize the parser to support UDF's across dialects as well through the transform API.

Syntax errors are highlighted and dialect incompatibilities can warn or raise depending on configurations.

Install

From PyPI

pip3 install sqlglot

Or with a local checkout

pip3 install -e .

Examples

Easily translate from one dialect to another. For example, date/time functions vary from dialects and can be hard to deal with.

import sqlglot
sqlglot.transpile("SELECT EPOCH_MS(1618088028295)", read='duckdb', write='hive')
SELECT TO_UTC_TIMESTAMP(FROM_UNIXTIME(1618088028295 / 1000, 'yyyy-MM-dd HH:mm:ss'), 'UTC')

Formatting and Transpiling

Read in a SQL statement with a CTE and CASTING to a REAL and then transpiling to Spark.

Spark uses backticks as identifiers and the REAL type is transpiled to FLOAT.

import sqlglot

sql = """WITH baz AS (SELECT a, c FROM foo WHERE a = 1) SELECT f.a, b.b, baz.c, CAST("b"."a" AS REAL) d FROM foo f JOIN bar b ON f.a = b.a LEFT JOIN baz ON f.a = baz.a"""
sqlglot.transpile(sql, write='spark', identify=True, pretty=True)[0])
WITH baz AS (
    SELECT
      `a`,
      `c`
    FROM `foo`
    WHERE
      `a` = 1
)
SELECT
  `f`.`a`,
  `b`.`b`,
  `baz`.`c`,
  CAST(`b`.`a` AS FLOAT) AS d
FROM `foo` AS f
JOIN `bar` AS b ON
  `f`.`a` = `b`.`a`
LEFT JOIN `baz` ON
  `f`.`a` = `baz`.`a`

Custom Transforms

A simple transform on types can be accomplished by providing a dict of Expression/TokenType => lambda/string

from sqlglot import *

transpile("SELECT CAST(a AS INT) FROM x", transforms={TokenType.INT: 'SPECIAL INT'})[0]
SELECT CAST(a AS SPECIAL INT) FROM x

More complicated transforms can be accomplished by using the Tokenizer, Parser, and Generator directly.

In this example, we want to parse a UDF SPECIAL_UDF and then output another version called SPECIAL_UDF_INVERSE with the arguments switched.

from sqlglot import *
from sqlglot.expressions import Func

class SpecialUDF(Func):
    arg_types = {'a': True, 'b': True}

tokens = Tokenizer().tokenize("SELECT SPECIAL_UDF(a, b) FROM x")

Here is the output of the tokenizer.

[
    <Token token_type: TokenType.SELECT, text: SELECT, line: 0, col: 0>,
    <Token token_type: TokenType.VAR, text: SPECIAL_UDF, line: 0, col: 7>,
    <Token token_type: TokenType.L_PAREN, text: (, line: 0, col: 18>,
    <Token token_type: TokenType.VAR, text: a, line: 0, col: 19>,
    <Token token_type: TokenType.COMMA, text: ,, line: 0, col: 20>,
    <Token token_type: TokenType.VAR, text: b, line: 0, col: 22>,
    <Token token_type: TokenType.R_PAREN, text: ), line: 0, col: 23>,
    <Token token_type: TokenType.FROM, text: FROM, line: 0, col: 25>,
    <Token token_type: TokenType.VAR, text: x, line: 0, col: 30>,
]

expression = Parser(functions={
    'SPECIAL_UDF': lambda args: SpecialUDF(a=args[0], b=args[1]),
}).parse(tokens)[0]

The expression tree produced by the parser.

(FROM this:
 (TABLE this: x, db: ), expression:
 (SELECT expressions:
  (COLUMN this:
   (FUNC a:
    (COLUMN this: a, db: , table: ), b:
    (COLUMN this: b, db: , table: )), db: , table: )))

Finally generating the new SQL.

Generator(transforms={
    SpecialUDF: lambda self, e: f"SPECIAL_UDF_INVERSE({self.sql(e, 'b')}, {self.sql(e, 'a')})"
}).generate(expression)
SELECT SPECIAL_UDF_INVERSE(b, a) FROM x

Parse Errors

A syntax error will result in an parse error.

transpile("SELECT foo( FROM bar")
sqlglot.errors.ParseError: Expected )
  SELECT foo( __FROM__ bar

Unsupported Errors

Presto APPROX_DISTINCT supports the accuracy argument which is not supported in Spark.

transpile(
    'SELECT APPROX_DISTINCT(a, 0.1) FROM foo',
    read='presto',
    write='spark',
)
WARNING:root:APPROX_COUNT_DISTINCT does not support accuracy

SELECT APPROX_COUNT_DISTINCT(a) FROM foo

Rewrite Sql

Modify sql expressions like adding a CTAS

from sqlglot import Generator, parse
from sqlglot.rewriter import Rewriter

expression = parse("SELECT * FROM y")[0]
Generator().generate(Rewriter(expression).ctas('x').expression)
CREATE TABLE x AS SELECT * FROM y
Query sqlglot sqlparse moz_sql_parser
short 0.00052 0.00113 0.00169
long 0.00513 0.01503 0.02137
crazy 0.01422 3.32793 0.35419

Run Tests and Lint

python -m unittest && python -m pylint sqlglot/ tests/

About

Python SQL Parser and Transpiler

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%