forked from CZ-NIC/knot-resolver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
selection.c
811 lines (735 loc) · 24.5 KB
/
selection.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
/* Copyright (C) CZ.NIC, z.s.p.o. <[email protected]>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
#include <libknot/dname.h>
#include "lib/selection.h"
#include "lib/selection_forward.h"
#include "lib/selection_iter.h"
#include "lib/rplan.h"
#include "lib/cache/api.h"
#include "lib/resolve.h"
#include "lib/utils.h"
#define VERBOSE_MSG(qry, ...) kr_log_q((qry), SELECTION, __VA_ARGS__)
#define DEFAULT_TIMEOUT 400
#define MAX_TIMEOUT 10000
#define EXPLORE_TIMEOUT_COEFFICIENT 2
#define MAX_BACKOFF 8
#define MINIMAL_TIMEOUT_ADDITION 20
/* After TCP_TIMEOUT_THRESHOLD timeouts one transport, we'll switch to TCP. */
#define TCP_TIMEOUT_THRESHOLD 2
/* If the expected RTT is over TCP_RTT_THRESHOLD we switch to TCP instead. */
#define TCP_RTT_THRESHOLD 2000
/* Define ε for ε-greedy algorithm (see select_transport)
* as ε=EPSILON_NOMIN/EPSILON_DENOM */
#define EPSILON_NOMIN 1
#define EPSILON_DENOM 20
static const char *kr_selection_error_str(enum kr_selection_error err) {
switch (err) {
#define X(ENAME) case KR_SELECTION_ ## ENAME: return #ENAME
X(OK);
X(QUERY_TIMEOUT);
X(TLS_HANDSHAKE_FAILED);
X(TCP_CONNECT_FAILED);
X(TCP_CONNECT_TIMEOUT);
X(REFUSED);
X(SERVFAIL);
X(FORMERR);
X(FORMERR_EDNS);
X(NOTIMPL);
X(OTHER_RCODE);
X(MALFORMED);
X(MISMATCHED);
X(TRUNCATED);
X(DNSSEC_ERROR);
X(LAME_DELEGATION);
X(BAD_CNAME);
case KR_SELECTION_NUMBER_OF_ERRORS: break; // not a valid code
#undef X
}
kr_assert(false); // we want to define all; compiler helps by -Wswitch (no default:)
return NULL;
}
/* Simple detection of IPv6 being broken.
*
* We follow all IPv6 timeouts and successes. Consider it broken iff we've had
* timeouts on several different IPv6 prefixes since the last IPv6 success.
* Note: unlike the rtt_state, this happens only per-process (for simplicity).
*
* ## NO6_PREFIX_* choice
* For our practical use we choose primarily based on root and typical TLD servers.
* Looking at *.{root,gtld}-servers.net, we have 7/26 AAAAs in 2001:500:00**::
* but adding one more byte makes these completely unique, so we choose /48.
* As distribution to ASs seems to be on shorter prefixes (RIPE: /32 -- /24?),
* we wait for several distinct prefixes.
*/
#define NO6_PREFIX_COUNT 6
#define NO6_PREFIX_BYTES (48/8)
static struct {
int len_used;
uint8_t addr_prefixes[NO6_PREFIX_COUNT][NO6_PREFIX_BYTES];
} no6_est = { .len_used = 0 };
bool no6_is_bad(void)
{
return no6_est.len_used == NO6_PREFIX_COUNT;
}
static void no6_timed_out(const struct kr_query *qry, const uint8_t *addr)
{
if (no6_is_bad()) { // we can't get worse
VERBOSE_MSG(qry, "NO6: timed out, but bad already\n");
return;
}
// If we have the address already, do nothing.
for (int i = 0; i < no6_est.len_used; ++i) {
if (memcmp(addr, no6_est.addr_prefixes[i], NO6_PREFIX_BYTES) == 0) {
VERBOSE_MSG(qry, "NO6: timed out, repeated prefix, timeouts %d/%d\n",
no6_est.len_used, (int)NO6_PREFIX_COUNT);
return;
}
}
// Append!
memcpy(no6_est.addr_prefixes[no6_est.len_used++], addr, NO6_PREFIX_BYTES);
VERBOSE_MSG(qry, "NO6: timed out, appended, timeouts %d/%d\n",
no6_est.len_used, (int)NO6_PREFIX_COUNT);
}
static inline void no6_success(const struct kr_query *qry)
{
if (no6_est.len_used) {
VERBOSE_MSG(qry, "NO6: success, zeroing %d/%d\n",
no6_est.len_used, (int)NO6_PREFIX_COUNT);
}
no6_est.len_used = 0;
}
/* Simple cache interface follows */
static knot_db_val_t cache_key(const uint8_t *ip, size_t len)
{
// CACHE_KEY_DEF: '\0' + 'S' + raw IP
const size_t key_len = len + 2;
uint8_t *key_data = malloc(key_len);
key_data[0] = '\0';
key_data[1] = 'S';
memcpy(key_data + 2, ip, len);
knot_db_val_t key = {
.len = key_len,
.data = key_data,
};
return key;
}
/* First value of timeout will be calculated as SRTT+4*VARIANCE
* by calc_timeout(), so it'll be equal to DEFAULT_TIMEOUT. */
static const struct rtt_state default_rtt_state = { .srtt = 0,
.variance = DEFAULT_TIMEOUT / 4,
.consecutive_timeouts = 0,
.dead_since = 0 };
struct rtt_state get_rtt_state(const uint8_t *ip, size_t len,
struct kr_cache *cache)
{
struct rtt_state state;
knot_db_val_t value;
knot_db_t *db = cache->db;
struct kr_cdb_stats *stats = &cache->stats;
knot_db_val_t key = cache_key(ip, len);
if (cache->api->read(db, stats, &key, &value, 1)) { // NOLINT(bugprone-branch-clone)
state = default_rtt_state;
} else if (kr_fails_assert(value.len == sizeof(struct rtt_state))) {
// shouldn't happen but let's be more robust
state = default_rtt_state;
} else { // memcpy is safe for unaligned case (on non-x86)
memcpy(&state, value.data, sizeof(state));
}
free(key.data);
return state;
}
int put_rtt_state(const uint8_t *ip, size_t len, struct rtt_state state,
struct kr_cache *cache)
{
knot_db_t *db = cache->db;
struct kr_cdb_stats *stats = &cache->stats;
knot_db_val_t key = cache_key(ip, len);
knot_db_val_t value = { .len = sizeof(struct rtt_state),
.data = &state };
int ret = cache->api->write(db, stats, &key, &value, 1);
kr_cache_commit(cache);
free(key.data);
return ret;
}
void bytes_to_ip(uint8_t *bytes, size_t len, uint16_t port, union kr_sockaddr *dst)
{
switch (len) {
case sizeof(struct in_addr):
dst->ip4.sin_family = AF_INET;
memcpy(&dst->ip4.sin_addr, bytes, len);
dst->ip4.sin_port = htons(port);
break;
case sizeof(struct in6_addr):
memset(&dst->ip6, 0, sizeof(dst->ip6)); // avoid uninit surprises
dst->ip6.sin6_family = AF_INET6;
memcpy(&dst->ip6.sin6_addr, bytes, len);
dst->ip6.sin6_port = htons(port);
break;
default:
kr_assert(false);
}
}
uint8_t *ip_to_bytes(const union kr_sockaddr *src, size_t len)
{
switch (len) {
case sizeof(struct in_addr):
return (uint8_t *)&src->ip4.sin_addr;
case sizeof(struct in6_addr):
return (uint8_t *)&src->ip6.sin6_addr;
default:
kr_assert(false);
return NULL;
}
}
static bool no_rtt_info(struct rtt_state s)
{
return s.srtt == 0 && s.consecutive_timeouts == 0;
}
static unsigned back_off_timeout(uint32_t to, int pow)
{
pow = MIN(pow, MAX_BACKOFF);
to <<= pow;
return MIN(to, MAX_TIMEOUT);
}
/* This is verbatim (minus the default timeout value and minimal variance)
* RFC6298, sec. 2. */
static unsigned calc_timeout(struct rtt_state state)
{
int32_t timeout = state.srtt + MAX(4 * state.variance, MINIMAL_TIMEOUT_ADDITION);
return back_off_timeout(timeout, state.consecutive_timeouts);
}
/* This is verbatim RFC6298, sec. 2. */
static struct rtt_state calc_rtt_state(struct rtt_state old, unsigned new_rtt)
{
if (no_rtt_info(old)) {
return (struct rtt_state){ new_rtt, new_rtt / 2, 0 };
}
struct rtt_state ret = { 0 };
ret.variance = (3 * old.variance + abs(old.srtt - (int32_t)new_rtt)
+ 2/*rounding*/) / 4;
ret.srtt = (7 * old.srtt + new_rtt + 4/*rounding*/) / 8;
return ret;
}
/**
* @internal Invalidate addresses which should be considered dead
*/
static void invalidate_dead_upstream(struct address_state *state,
unsigned int retry_timeout)
{
struct rtt_state *rs = &state->rtt_state;
if (rs->dead_since) {
uint64_t now = kr_now();
if (now < rs->dead_since) {
// broken continuity of timestamp (reboot, different machine, etc.)
*rs = default_rtt_state;
} else if (now < rs->dead_since + retry_timeout) {
// period when we don't want to use the address
state->generation = -1;
} else {
kr_assert(now >= rs->dead_since + retry_timeout);
// we allow to retry the server now
// TODO: perhaps tweak *rs?
}
}
}
/**
* @internal Check if IP address is TLS capable.
*
* @p req has to have the selection_context properly initialized.
*/
static void check_tls_capable(struct address_state *address_state,
struct kr_request *req, struct sockaddr *address)
{
address_state->tls_capable =
req->selection_context.is_tls_capable ?
req->selection_context.is_tls_capable(address) :
false;
}
#if 0
/* TODO: uncomment these once we actually use the information it collects. */
/**
* Check if there is a existing TCP connection to this address.
*
* @p req has to have the selection_context properly initialized.
*/
void check_tcp_connections(struct address_state *address_state, struct kr_request *req, struct sockaddr *address) {
address_state->tcp_connected = req->selection_context.is_tcp_connected ? req->selection_context.is_tcp_connected(address) : false;
address_state->tcp_waiting = req->selection_context.is_tcp_waiting ? req->selection_context.is_tcp_waiting(address) : false;
}
#endif
/**
* @internal Invalidate address if the respective IP version is disabled.
*/
static void check_network_settings(struct address_state *address_state,
size_t address_len, bool no_ipv4, bool no_ipv6)
{
if (no_ipv4 && address_len == sizeof(struct in_addr)) {
address_state->generation = -1;
}
if (no_ipv6 && address_len == sizeof(struct in6_addr)) {
address_state->generation = -1;
}
}
void update_address_state(struct address_state *state, union kr_sockaddr *address,
size_t address_len, struct kr_query *qry)
{
check_tls_capable(state, qry->request, &address->ip);
/* TODO: uncomment this once we actually use the information it collects
check_tcp_connections(address_state, qry->request, &address->ip);
*/
check_network_settings(state, address_len, qry->flags.NO_IPV4,
qry->flags.NO_IPV6);
state->rtt_state =
get_rtt_state(ip_to_bytes(address, address_len),
address_len, &qry->request->ctx->cache);
invalidate_dead_upstream(
state, qry->request->ctx->cache_rtt_tout_retry_interval);
#ifdef SELECTION_CHOICE_LOGGING
// This is sometimes useful for debugging, but usually too verbose
if (kr_log_is_debug_qry(SELECTION, qry)) {
const char *ns_str = kr_straddr(&address->ip);
VERBOSE_MSG(qry, "rtt of %s is %d, variance is %d\n", ns_str,
state->rtt_state.srtt, state->rtt_state.variance);
}
#endif
}
static int cmp_choices(const struct choice *a_, const struct choice *b_)
{
int diff;
/* Prefer IPv4 if IPv6 appears to be generally broken. */
diff = (int)a_->address_len - (int)b_->address_len;
if (diff && no6_is_bad()) {
return diff;
}
/* Address with no RTT information is better than address
* with some information. */
if ((diff = no_rtt_info(b_->address_state->rtt_state) -
no_rtt_info(a_->address_state->rtt_state))) {
return diff;
}
/* Address with less errors is better. */
if ((diff = a_->address_state->error_count -
b_->address_state->error_count)) {
return diff;
}
/* Address with smaller expected timeout is better. */
if ((diff = calc_timeout(a_->address_state->rtt_state) -
calc_timeout(b_->address_state->rtt_state))) {
return diff;
}
return 0;
}
/** Select the best entry from choices[] according to cmp_choices() comparator.
*
* Ties are decided in an (almost) uniformly random fashion.
*/
static const struct choice * select_best(const struct choice choices[], int choices_len)
{
/* Deciding ties: it's as-if each index carries one byte of randomness.
* Ties get decided by comparing that byte, and the byte itself
* is computed lazily (negative until computed).
*/
int best_i = 0;
int best_rnd = -1;
for (int i = 1; i < choices_len; ++i) {
int diff = cmp_choices(&choices[i], &choices[best_i]);
if (diff > 0)
continue;
if (diff < 0) {
best_i = i;
best_rnd = -1;
continue;
}
if (best_rnd < 0)
best_rnd = kr_rand_bytes(1);
int new_rnd = kr_rand_bytes(1);
if (new_rnd < best_rnd) {
best_i = i;
best_rnd = new_rnd;
}
}
return &choices[best_i];
}
/* Adjust choice from `unresolved` in case of NO6 (broken IPv6). */
static struct kr_transport unresolved_adjust(const struct to_resolve unresolved[],
int unresolved_len, int index)
{
if (unresolved[index].type != KR_TRANSPORT_RESOLVE_AAAA || !no6_is_bad())
goto finish;
/* AAAA is detected as bad; let's choose randomly from others, if there are any. */
int aaaa_count = 0;
for (int i = 0; i < unresolved_len; ++i)
aaaa_count += (unresolved[i].type == KR_TRANSPORT_RESOLVE_AAAA);
if (aaaa_count == unresolved_len)
goto finish;
/* Chosen index within non-AAAA items. */
int i_no6 = kr_rand_bytes(1) % (unresolved_len - aaaa_count);
for (int i = 0; i < unresolved_len; ++i) {
if (unresolved[i].type == KR_TRANSPORT_RESOLVE_AAAA) {
//continue
} else if (i_no6 == 0) {
index = i;
break;
} else {
--i_no6;
}
}
finish:
return (struct kr_transport){
.protocol = unresolved[index].type,
.ns_name = unresolved[index].name
};
}
/* Performs the actual selection (currently variation on epsilon-greedy). */
struct kr_transport *select_transport(const struct choice choices[], int choices_len,
const struct to_resolve unresolved[],
int unresolved_len, int timeouts,
struct knot_mm *mempool, bool tcp,
size_t *choice_index)
{
if (!choices_len && !unresolved_len) {
/* There is nothing to choose from */
return NULL;
}
struct kr_transport *transport = mm_calloc(mempool, 1, sizeof(*transport));
/* If there are some addresses with no rtt_info we try them
* first (see cmp_choices). So unknown servers are chosen
* *before* the best know server. This ensures that every option
* is tried before going back to some that was tried before. */
const struct choice *best = select_best(choices, choices_len);
const struct choice *chosen;
const bool explore = choices_len == 0 || kr_rand_coin(EPSILON_NOMIN, EPSILON_DENOM)
/* We may need to explore to get at least one A record. */
|| (no6_is_bad() && best->address.ip.sa_family == AF_INET6);
if (explore) {
/* "EXPLORE":
* randomly choose some option
* (including resolution of some new name). */
int index = kr_rand_bytes(1) % (choices_len + unresolved_len);
if (index < unresolved_len) {
// We will resolve a new NS name
*transport = unresolved_adjust(unresolved, unresolved_len, index);
return transport;
} else {
chosen = &choices[index - unresolved_len];
}
} else {
/* "EXPLOIT":
* choose a resolved address which seems best right now. */
chosen = best;
}
/* Don't try the same server again when there are other choices to be explored */
if (chosen->address_state->error_count && unresolved_len) {
int index = kr_rand_bytes(1) % unresolved_len;
*transport = unresolved_adjust(unresolved, unresolved_len, index);
return transport;
}
unsigned timeout;
if (no_rtt_info(chosen->address_state->rtt_state)) {
/* Exponential back-off when retrying after timeout and choosing
* an unknown server. */
timeout = back_off_timeout(DEFAULT_TIMEOUT, timeouts);
} else {
timeout = calc_timeout(chosen->address_state->rtt_state);
if (explore) {
/* When trying a random server, we cap the timeout to EXPLORE_TIMEOUT_COEFFICIENT
* times the timeout for the best server. This is done so we don't spend
* unreasonable amounts of time probing really bad servers while still
* checking once in a while for e.g. big network change etc.
* We also note this capping was done and don't punish the bad server
* further if it fails to answer in the capped timeout. */
unsigned best_timeout = calc_timeout(best->address_state->rtt_state);
if (timeout > best_timeout * EXPLORE_TIMEOUT_COEFFICIENT) {
timeout = best_timeout * EXPLORE_TIMEOUT_COEFFICIENT;
transport->timeout_capped = true;
}
}
}
enum kr_transport_protocol protocol;
if (chosen->address_state->tls_capable) {
protocol = KR_TRANSPORT_TLS;
} else if (tcp ||
chosen->address_state->errors[KR_SELECTION_QUERY_TIMEOUT] >= TCP_TIMEOUT_THRESHOLD ||
timeout > TCP_RTT_THRESHOLD) {
protocol = KR_TRANSPORT_TCP;
} else {
protocol = KR_TRANSPORT_UDP;
}
*transport = (struct kr_transport){
.ns_name = chosen->address_state->ns_name,
.protocol = protocol,
.timeout = timeout,
};
int port = chosen->port;
if (!port) {
switch (transport->protocol) {
case KR_TRANSPORT_TLS:
port = KR_DNS_TLS_PORT;
break;
case KR_TRANSPORT_UDP:
case KR_TRANSPORT_TCP:
port = KR_DNS_PORT;
break;
default:
kr_assert(false);
return NULL;
}
}
switch (chosen->address_len)
{
case sizeof(struct in_addr):
transport->address.ip4 = chosen->address.ip4;
transport->address.ip4.sin_port = htons(port);
break;
case sizeof(struct in6_addr):
transport->address.ip6 = chosen->address.ip6;
transport->address.ip6.sin6_port = htons(port);
break;
default:
kr_assert(false);
return NULL;
}
transport->address_len = chosen->address_len;
if (choice_index) {
*choice_index = chosen->address_state->choice_array_index;
}
return transport;
}
void update_rtt(struct kr_query *qry, struct address_state *addr_state,
const struct kr_transport *transport, unsigned rtt)
{
if (!transport || !addr_state) {
/* Answers from cache have NULL transport, ignore them. */
return;
}
struct kr_cache *cache = &qry->request->ctx->cache;
uint8_t *address = ip_to_bytes(&transport->address, transport->address_len);
/* This construct is a bit racy since the global state may change
* between calls to `get_rtt_state` and `put_rtt_state` but we don't
* care that much since it is rare and we only risk slightly suboptimal
* transport choice. */
struct rtt_state cur_rtt_state =
get_rtt_state(address, transport->address_len, cache);
struct rtt_state new_rtt_state = calc_rtt_state(cur_rtt_state, rtt);
put_rtt_state(address, transport->address_len, new_rtt_state, cache);
if (transport->address_len == sizeof(struct in6_addr))
no6_success(qry);
if (kr_log_is_debug_qry(SELECTION, qry)) {
KR_DNAME_GET_STR(ns_name, transport->ns_name);
KR_DNAME_GET_STR(zonecut_str, qry->zone_cut.name);
const char *ns_str = kr_straddr(&transport->address.ip);
VERBOSE_MSG(
qry,
"=> id: '%05u' updating: '%s'@'%s' zone cut: '%s'"
" with rtt %u to srtt: %d and variance: %d \n",
qry->id, ns_name, ns_str ? ns_str : "", zonecut_str,
rtt, new_rtt_state.srtt, new_rtt_state.variance);
}
}
/// Update rtt_state (including caching) after a server timed out.
static void server_timeout(const struct kr_query *qry, const struct kr_transport *transport,
struct address_state *addr_state, struct kr_cache *cache)
{
// Make sure that the timeout wasn't capped; see kr_transport::timeout_capped
if (transport->timeout_capped)
return;
const uint8_t *address = ip_to_bytes(&transport->address, transport->address_len);
if (transport->address_len == sizeof(struct in6_addr))
no6_timed_out(qry, address);
struct rtt_state *state = &addr_state->rtt_state;
// While we were waiting for timeout, the stats might have changed considerably,
// so let's overwrite what we had by fresh cache contents.
// This is useful when the address is busy (we query it concurrently).
*state = get_rtt_state(address, transport->address_len, cache);
++state->consecutive_timeouts;
// Avoid overflow; we don't utilize very high values anyway (arbitrary limit).
state->consecutive_timeouts = MIN(64, state->consecutive_timeouts);
if (state->consecutive_timeouts >= KR_NS_TIMEOUT_ROW_DEAD) {
// Only mark as dead if we waited long enough,
// so that many (concurrent) short attempts can't cause the dead state.
if (transport->timeout >= KR_NS_TIMEOUT_MIN_DEAD_TIMEOUT)
state->dead_since = kr_now();
}
// If transport was chosen by a different query, that one will cache it.
if (!transport->deduplicated) {
put_rtt_state(address, transport->address_len, *state, cache);
} else {
kr_cache_commit(cache); // Avoid any risk of long transaction.
}
}
// Not everything can be checked in nice ways like static_assert()
static __attribute__((constructor)) void test_RTT_consts(void)
{
// See KR_NS_TIMEOUT_MIN_DEAD_TIMEOUT above.
kr_require(
calc_timeout((struct rtt_state){ .consecutive_timeouts = MAX_BACKOFF, })
>= KR_NS_TIMEOUT_MIN_DEAD_TIMEOUT
);
}
void error(struct kr_query *qry, struct address_state *addr_state,
const struct kr_transport *transport,
enum kr_selection_error sel_error)
{
if (!transport || !addr_state) {
/* Answers from cache have NULL transport, ignore them. */
return;
}
switch (sel_error) {
case KR_SELECTION_OK:
return;
case KR_SELECTION_TCP_CONNECT_FAILED:
case KR_SELECTION_TCP_CONNECT_TIMEOUT:
qry->server_selection.local_state->force_udp = true;
qry->flags.NO_0X20 = false;
/* Connection and handshake failures have properties similar
* to UDP timeouts, so we handle them (almost) the same way. */
/* fall-through */
case KR_SELECTION_TLS_HANDSHAKE_FAILED:
case KR_SELECTION_QUERY_TIMEOUT:
qry->server_selection.local_state->timeouts++;
server_timeout(qry, transport, addr_state, &qry->request->ctx->cache);
break;
case KR_SELECTION_FORMERR:
if (qry->flags.NO_EDNS) {
addr_state->broken = true;
} else {
qry->flags.NO_EDNS = true;
}
break;
case KR_SELECTION_FORMERR_EDNS:
addr_state->broken = true;
break;
case KR_SELECTION_MISMATCHED:
if (qry->flags.NO_0X20 && qry->flags.TCP) {
addr_state->broken = true;
} else {
qry->flags.TCP = true;
qry->flags.NO_0X20 = true;
}
break;
case KR_SELECTION_TRUNCATED:
if (transport->protocol == KR_TRANSPORT_UDP) {
qry->server_selection.local_state->truncated = true;
/* TC=1 over UDP is not an error, so we compensate. */
addr_state->error_count--;
} else {
addr_state->broken = true;
}
break;
case KR_SELECTION_REFUSED:
case KR_SELECTION_SERVFAIL:
if (qry->flags.FORWARD || qry->flags.STUB) {
/* The NS might not be broken, but this state is just for this query
* and it doesn't make sense to retry on the same NS immediately. */
addr_state->broken = true;
break;
}
/* For authoritative servers we try some fallback workarounds. */
if (qry->flags.NO_MINIMIZE && qry->flags.NO_0X20 && qry->flags.TCP) {
addr_state->broken = true;
} else if (qry->flags.NO_MINIMIZE) {
qry->flags.NO_0X20 = true;
qry->flags.TCP = true;
} else {
qry->flags.NO_MINIMIZE = true;
}
break;
case KR_SELECTION_LAME_DELEGATION:
if (qry->flags.NO_MINIMIZE) {
/* Lame delegations are weird, they breed more lame delegations on broken
* zones since trying another server from the same set usually doesn't help.
* We force resolution of another NS name in hope of getting somewhere. */
qry->server_selection.local_state->force_resolve = true;
addr_state->broken = true;
} else {
qry->flags.NO_MINIMIZE = true;
}
break;
case KR_SELECTION_NOTIMPL:
case KR_SELECTION_OTHER_RCODE:
case KR_SELECTION_DNSSEC_ERROR:
case KR_SELECTION_BAD_CNAME:
case KR_SELECTION_MALFORMED:
/* These errors are fatal, no point in trying this server again. */
addr_state->broken = true;
break;
default:
kr_assert(false);
return;
}
addr_state->error_count++;
addr_state->errors[sel_error]++;
if (kr_log_is_debug_qry(SELECTION, qry)) {
KR_DNAME_GET_STR(ns_name, transport->ns_name);
KR_DNAME_GET_STR(zonecut_str, qry->zone_cut.name);
const char *ns_str = kr_straddr(&transport->address.ip);
const char *err_str = kr_selection_error_str(sel_error);
VERBOSE_MSG(
qry,
"=> id: '%05u' noting selection error: '%s'@'%s'"
" zone cut: '%s' error: %d %s\n",
qry->id, ns_name, ns_str ? ns_str : "",
zonecut_str, sel_error, err_str ? err_str : "??");
}
}
void kr_server_selection_init(struct kr_query *qry)
{
struct knot_mm *mempool = &qry->request->pool;
struct local_state *local_state = mm_calloc(mempool, 1, sizeof(*local_state));
if (qry->flags.FORWARD || qry->flags.STUB) {
qry->server_selection = (struct kr_server_selection){
.initialized = true,
.choose_transport = forward_choose_transport,
.update_rtt = forward_update_rtt,
.error = forward_error,
.local_state = local_state,
};
forward_local_state_alloc(
mempool, &qry->server_selection.local_state->private,
qry->request);
} else {
qry->server_selection = (struct kr_server_selection){
.initialized = true,
.choose_transport = iter_choose_transport,
.update_rtt = iter_update_rtt,
.error = iter_error,
.local_state = local_state,
};
iter_local_state_alloc(
mempool, &qry->server_selection.local_state->private);
}
}
void kr_server_selection_cached(struct kr_query *qry)
{
qry->server_selection = (struct kr_server_selection){
.initialized = false,
// we reuse iter_error, as it's no-op if (!initialized)
.error = iter_error,
// everything else is NULL
};
}
int kr_forward_add_target(struct kr_request *req, const struct sockaddr *sock)
{
if (!req->selection_context.forwarding_targets.at) {
return kr_error(EINVAL);
}
union kr_sockaddr address;
switch (sock->sa_family) {
case AF_INET:
if (req->options.NO_IPV4)
return kr_error(EINVAL);
address.ip4 = *(const struct sockaddr_in *)sock;
break;
case AF_INET6:
if (req->options.NO_IPV6)
return kr_error(EINVAL);
address.ip6 = *(const struct sockaddr_in6 *)sock;
break;
default:
return kr_error(EINVAL);
}
array_push_mm(req->selection_context.forwarding_targets, address,
kr_memreserve, &req->pool);
return kr_ok();
}