forked from quictls/openssl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tls_pad.c
325 lines (290 loc) · 12.2 KB
/
tls_pad.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*
* Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/rand.h>
#include <openssl/evp.h>
#include "internal/constant_time.h"
#include "internal/cryptlib.h"
/*
* This file has no dependencies on the rest of libssl because it is shared
* with the providers. It contains functions for low level CBC TLS padding
* removal. Responsibility for this lies with the cipher implementations in the
* providers. However there are legacy code paths in libssl which also need to
* do this. In time those legacy code paths can be removed and this file can be
* moved out of libssl.
*/
static int ssl3_cbc_copy_mac(size_t *reclen,
size_t origreclen,
unsigned char *recdata,
unsigned char **mac,
int *alloced,
size_t block_size,
size_t mac_size,
size_t good,
OSSL_LIB_CTX *libctx);
int ssl3_cbc_remove_padding_and_mac(size_t *reclen,
size_t origreclen,
unsigned char *recdata,
unsigned char **mac,
int *alloced,
size_t block_size, size_t mac_size,
OSSL_LIB_CTX *libctx);
int tls1_cbc_remove_padding_and_mac(size_t *reclen,
size_t origreclen,
unsigned char *recdata,
unsigned char **mac,
int *alloced,
size_t block_size, size_t mac_size,
int aead,
OSSL_LIB_CTX *libctx);
/*-
* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
* record in |recdata| by updating |reclen| in constant time. It also extracts
* the MAC from the underlying record and places a pointer to it in |mac|. The
* MAC data can either be newly allocated memory, or a pointer inside the
* |recdata| buffer. If allocated then |*alloced| is set to 1, otherwise it is
* set to 0.
*
* origreclen: the original record length before any changes were made
* block_size: the block size of the cipher used to encrypt the record.
* mac_size: the size of the MAC to be extracted
* aead: 1 if an AEAD cipher is in use, or 0 otherwise
* returns:
* 0: if the record is publicly invalid.
* 1: if the record is publicly valid. If the padding removal fails then the
* MAC returned is random.
*/
int ssl3_cbc_remove_padding_and_mac(size_t *reclen,
size_t origreclen,
unsigned char *recdata,
unsigned char **mac,
int *alloced,
size_t block_size, size_t mac_size,
OSSL_LIB_CTX *libctx)
{
size_t padding_length;
size_t good;
const size_t overhead = 1 /* padding length byte */ + mac_size;
/*
* These lengths are all public so we can test them in non-constant time.
*/
if (overhead > *reclen)
return 0;
padding_length = recdata[*reclen - 1];
good = constant_time_ge_s(*reclen, padding_length + overhead);
/* SSLv3 requires that the padding is minimal. */
good &= constant_time_ge_s(block_size, padding_length + 1);
*reclen -= good & (padding_length + 1);
return ssl3_cbc_copy_mac(reclen, origreclen, recdata, mac, alloced,
block_size, mac_size, good, libctx);
}
/*-
* tls1_cbc_remove_padding_and_mac removes padding from the decrypted, TLS, CBC
* record in |recdata| by updating |reclen| in constant time. It also extracts
* the MAC from the underlying record and places a pointer to it in |mac|. The
* MAC data can either be newly allocated memory, or a pointer inside the
* |recdata| buffer. If allocated then |*alloced| is set to 1, otherwise it is
* set to 0.
*
* origreclen: the original record length before any changes were made
* block_size: the block size of the cipher used to encrypt the record.
* mac_size: the size of the MAC to be extracted
* aead: 1 if an AEAD cipher is in use, or 0 otherwise
* returns:
* 0: if the record is publicly invalid.
* 1: if the record is publicly valid. If the padding removal fails then the
* MAC returned is random.
*/
int tls1_cbc_remove_padding_and_mac(size_t *reclen,
size_t origreclen,
unsigned char *recdata,
unsigned char **mac,
int *alloced,
size_t block_size, size_t mac_size,
int aead,
OSSL_LIB_CTX *libctx)
{
size_t good = -1;
size_t padding_length, to_check, i;
size_t overhead = ((block_size == 1) ? 0 : 1) /* padding length byte */
+ mac_size;
/*
* These lengths are all public so we can test them in non-constant
* time.
*/
if (overhead > *reclen)
return 0;
if (block_size != 1) {
padding_length = recdata[*reclen - 1];
if (aead) {
/* padding is already verified and we don't need to check the MAC */
*reclen -= padding_length + 1 + mac_size;
return 1;
}
good = constant_time_ge_s(*reclen, overhead + padding_length);
/*
* The padding consists of a length byte at the end of the record and
* then that many bytes of padding, all with the same value as the
* length byte. Thus, with the length byte included, there are i+1 bytes
* of padding. We can't check just |padding_length+1| bytes because that
* leaks decrypted information. Therefore we always have to check the
* maximum amount of padding possible. (Again, the length of the record
* is public information so we can use it.)
*/
to_check = 256; /* maximum amount of padding, inc length byte. */
if (to_check > *reclen)
to_check = *reclen;
for (i = 0; i < to_check; i++) {
unsigned char mask = constant_time_ge_8_s(padding_length, i);
unsigned char b = recdata[*reclen - 1 - i];
/*
* The final |padding_length+1| bytes should all have the value
* |padding_length|. Therefore the XOR should be zero.
*/
good &= ~(mask & (padding_length ^ b));
}
/*
* If any of the final |padding_length+1| bytes had the wrong value, one
* or more of the lower eight bits of |good| will be cleared.
*/
good = constant_time_eq_s(0xff, good & 0xff);
*reclen -= good & (padding_length + 1);
}
return ssl3_cbc_copy_mac(reclen, origreclen, recdata, mac, alloced,
block_size, mac_size, good, libctx);
}
/*-
* ssl3_cbc_copy_mac copies |md_size| bytes from the end of the record in
* |recdata| to |*mac| in constant time (independent of the concrete value of
* the record length |reclen|, which may vary within a 256-byte window).
*
* On entry:
* origreclen >= mac_size
* mac_size <= EVP_MAX_MD_SIZE
*
* If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
* variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
* a single or pair of cache-lines, then the variable memory accesses don't
* actually affect the timing. CPUs with smaller cache-lines [if any] are
* not multi-core and are not considered vulnerable to cache-timing attacks.
*/
#define CBC_MAC_ROTATE_IN_PLACE
static int ssl3_cbc_copy_mac(size_t *reclen,
size_t origreclen,
unsigned char *recdata,
unsigned char **mac,
int *alloced,
size_t block_size,
size_t mac_size,
size_t good,
OSSL_LIB_CTX *libctx)
{
#if defined(CBC_MAC_ROTATE_IN_PLACE)
unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
unsigned char *rotated_mac;
char aux1, aux2, aux3, mask;
#else
unsigned char rotated_mac[EVP_MAX_MD_SIZE];
#endif
unsigned char randmac[EVP_MAX_MD_SIZE];
unsigned char *out;
/*
* mac_end is the index of |recdata| just after the end of the MAC.
*/
size_t mac_end = *reclen;
size_t mac_start = mac_end - mac_size;
size_t in_mac;
/*
* scan_start contains the number of bytes that we can ignore because the
* MAC's position can only vary by 255 bytes.
*/
size_t scan_start = 0;
size_t i, j;
size_t rotate_offset;
if (!ossl_assert(origreclen >= mac_size
&& mac_size <= EVP_MAX_MD_SIZE))
return 0;
/* If no MAC then nothing to be done */
if (mac_size == 0) {
/* No MAC so we can do this in non-constant time */
if (good == 0)
return 0;
return 1;
}
*reclen -= mac_size;
if (block_size == 1) {
/* There's no padding so the position of the MAC is fixed */
if (mac != NULL)
*mac = &recdata[*reclen];
if (alloced != NULL)
*alloced = 0;
return 1;
}
/* Create the random MAC we will emit if padding is bad */
if (RAND_bytes_ex(libctx, randmac, mac_size, 0) <= 0)
return 0;
if (!ossl_assert(mac != NULL && alloced != NULL))
return 0;
*mac = out = OPENSSL_malloc(mac_size);
if (*mac == NULL)
return 0;
*alloced = 1;
#if defined(CBC_MAC_ROTATE_IN_PLACE)
rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63);
#endif
/* This information is public so it's safe to branch based on it. */
if (origreclen > mac_size + 255 + 1)
scan_start = origreclen - (mac_size + 255 + 1);
in_mac = 0;
rotate_offset = 0;
memset(rotated_mac, 0, mac_size);
for (i = scan_start, j = 0; i < origreclen; i++) {
size_t mac_started = constant_time_eq_s(i, mac_start);
size_t mac_ended = constant_time_lt_s(i, mac_end);
unsigned char b = recdata[i];
in_mac |= mac_started;
in_mac &= mac_ended;
rotate_offset |= j & mac_started;
rotated_mac[j++] |= b & in_mac;
j &= constant_time_lt_s(j, mac_size);
}
/* Now rotate the MAC */
#if defined(CBC_MAC_ROTATE_IN_PLACE)
j = 0;
for (i = 0; i < mac_size; i++) {
/*
* in case cache-line is 32 bytes,
* load from both lines and select appropriately
*/
aux1 = rotated_mac[rotate_offset & ~32];
aux2 = rotated_mac[rotate_offset | 32];
mask = constant_time_eq_8(rotate_offset & ~32, rotate_offset);
aux3 = constant_time_select_8(mask, aux1, aux2);
rotate_offset++;
/* If the padding wasn't good we emit a random MAC */
out[j++] = constant_time_select_8((unsigned char)(good & 0xff),
aux3,
randmac[i]);
rotate_offset &= constant_time_lt_s(rotate_offset, mac_size);
}
#else
memset(out, 0, mac_size);
rotate_offset = mac_size - rotate_offset;
rotate_offset &= constant_time_lt_s(rotate_offset, mac_size);
for (i = 0; i < mac_size; i++) {
for (j = 0; j < mac_size; j++)
out[j] |= rotated_mac[i] & constant_time_eq_8_s(j, rotate_offset);
rotate_offset++;
rotate_offset &= constant_time_lt_s(rotate_offset, mac_size);
/* If the padding wasn't good we emit a random MAC */
out[i] = constant_time_select_8((unsigned char)(good & 0xff), out[i],
randmac[i]);
}
#endif
return 1;
}