-
Notifications
You must be signed in to change notification settings - Fork 159
/
ava_eval_helper.py
309 lines (262 loc) · 10.1 KB
/
ava_eval_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
#
# Based on:
# --------------------------------------------------------
# ActivityNet
# Copyright (c) 2015 ActivityNet
# Licensed under The MIT License
# [see https://github.com/activitynet/ActivityNet/blob/master/LICENSE for details]
# --------------------------------------------------------
"""Helper functions for AVA evaluation."""
from __future__ import (
absolute_import,
division,
print_function,
unicode_literals,
)
import csv
import logging
import numpy as np
import pprint
import time
from collections import defaultdict
from fvcore.common.file_io import PathManager
from datasets.ava_evaluation import (
object_detection_evaluation,
standard_fields,
)
logger = logging.getLogger(__name__)
def make_image_key(video_id, timestamp):
"""Returns a unique identifier for a video id & timestamp."""
return "%s,%04d" % (video_id, int(timestamp))
def read_csv(csv_file, class_whitelist=None, load_score=False):
"""Loads boxes and class labels from a CSV file in the AVA format.
CSV file format described at https://research.google.com/ava/download.html.
Args:
csv_file: A file object.
class_whitelist: If provided, boxes corresponding to (integer) class labels
not in this set are skipped.
Returns:
boxes: A dictionary mapping each unique image key (string) to a list of
boxes, given as coordinates [y1, x1, y2, x2].
labels: A dictionary mapping each unique image key (string) to a list of
integer class lables, matching the corresponding box in `boxes`.
scores: A dictionary mapping each unique image key (string) to a list of
score values lables, matching the corresponding label in `labels`. If
scores are not provided in the csv, then they will default to 1.0.
"""
boxes = defaultdict(list)
labels = defaultdict(list)
scores = defaultdict(list)
with PathManager.open(csv_file, "r") as f:
reader = csv.reader(f)
for row in reader:
assert len(row) in [7, 8], "Wrong number of columns: " + row
image_key = make_image_key(row[0], row[1])
x1, y1, x2, y2 = [float(n) for n in row[2:6]]
action_id = int(row[6])
if class_whitelist and action_id not in class_whitelist:
continue
score = 1.0
if load_score:
score = float(row[7])
boxes[image_key].append([y1, x1, y2, x2])
labels[image_key].append(action_id)
scores[image_key].append(score)
return boxes, labels, scores
def read_exclusions(exclusions_file):
"""Reads a CSV file of excluded timestamps.
Args:
exclusions_file: A file object containing a csv of video-id,timestamp.
Returns:
A set of strings containing excluded image keys, e.g. "aaaaaaaaaaa,0904",
or an empty set if exclusions file is None.
"""
excluded = set()
if exclusions_file:
with PathManager.open(exclusions_file, "r") as f:
reader = csv.reader(f)
for row in reader:
assert len(row) == 2, "Expected only 2 columns, got: " + row
excluded.add(make_image_key(row[0], row[1]))
return excluded
def read_labelmap(labelmap_file):
"""Read label map and class ids."""
labelmap = []
class_ids = set()
name = ""
class_id = ""
with PathManager.open(labelmap_file, "r") as f:
for line in f:
if line.startswith(" name:"):
name = line.split('"')[1]
elif line.startswith(" id:") or line.startswith(" label_id:"):
class_id = int(line.strip().split(" ")[-1])
labelmap.append({"id": class_id, "name": name})
class_ids.add(class_id)
return labelmap, class_ids
def evaluate_ava_from_files(labelmap, groundtruth, detections, exclusions):
"""Run AVA evaluation given annotation/prediction files."""
categories, class_whitelist = read_labelmap(labelmap)
excluded_keys = read_exclusions(exclusions)
groundtruth = read_csv(groundtruth, class_whitelist, load_score=False)
detections = read_csv(detections, class_whitelist, load_score=True)
run_evaluation(categories, groundtruth, detections, excluded_keys)
def evaluate_ava(
preds,
original_boxes,
metadata,
excluded_keys,
class_whitelist,
categories,
groundtruth=None,
video_idx_to_name=None,
name="latest",
):
"""Run AVA evaluation given numpy arrays."""
eval_start = time.time()
detections = get_ava_eval_data(
preds,
original_boxes,
metadata,
class_whitelist,
video_idx_to_name=video_idx_to_name,
)
logger.info("Evaluating with %d unique GT frames." % len(groundtruth[0]))
logger.info(
"Evaluating with %d unique detection frames" % len(detections[0])
)
write_results(detections, "detections_%s.csv" % name)
write_results(groundtruth, "groundtruth_%s.csv" % name)
results = run_evaluation(categories, groundtruth, detections, excluded_keys)
logger.info("AVA eval done in %f seconds." % (time.time() - eval_start))
return results["PascalBoxes_Precision/[email protected]"]
def run_evaluation(
categories, groundtruth, detections, excluded_keys, verbose=True
):
"""AVA evaluation main logic."""
pascal_evaluator = object_detection_evaluation.PascalDetectionEvaluator(
categories
)
boxes, labels, _ = groundtruth
gt_keys = []
pred_keys = []
for image_key in boxes:
if image_key in excluded_keys:
logging.info(
(
"Found excluded timestamp in ground truth: %s. "
"It will be ignored."
),
image_key,
)
continue
pascal_evaluator.add_single_ground_truth_image_info(
image_key,
{
standard_fields.InputDataFields.groundtruth_boxes: np.array(
boxes[image_key], dtype=float
),
standard_fields.InputDataFields.groundtruth_classes: np.array(
labels[image_key], dtype=int
),
standard_fields.InputDataFields.groundtruth_difficult: np.zeros(
len(boxes[image_key]), dtype=bool
),
},
)
gt_keys.append(image_key)
'''detections format
boxes: dict, {'<video_name>,<sec>': [box1, box2,...(each box_i is normalized x1y1x2y2)]}
labels: dict, {'<video_name>,<sec>': [cls_id(1 based), ...]}
scores: dict, {'<video_name>,<sec>': [score...]}
each box_i corresponds to 60 classes (classwhite list otherwise should be 80) and 60 scores
'''
boxes, labels, scores = detections
for image_key in boxes:
if image_key in excluded_keys:
logging.info(
(
"Found excluded timestamp in detections: %s. "
"It will be ignored."
),
image_key,
)
continue
pascal_evaluator.add_single_detected_image_info(
image_key,
{
standard_fields.DetectionResultFields.detection_boxes: np.array(
boxes[image_key], dtype=float
),
standard_fields.DetectionResultFields.detection_classes: np.array(
labels[image_key], dtype=int
),
standard_fields.DetectionResultFields.detection_scores: np.array(
scores[image_key], dtype=float
),
},
)
pred_keys.append(image_key)
metrics = pascal_evaluator.evaluate()
pprint.pprint(metrics, indent=2)
return metrics
def get_ava_eval_data(
scores,
boxes,
metadata,
class_whitelist,
verbose=False,
video_idx_to_name=None,
):
"""
Convert our data format into the data format used in official AVA
evaluation.
"""
out_scores = defaultdict(list)
out_labels = defaultdict(list)
out_boxes = defaultdict(list)
count = 0
for i in range(scores.shape[0]):
video_idx = int(np.round(metadata[i][0]))
sec = int(np.round(metadata[i][1]))
video = video_idx_to_name[video_idx]
key = video + "," + "%04d" % (sec)
batch_box = boxes[i].tolist() # [batch_idx, x1, y1, x2, y2]
# The first is batch idx.
batch_box = [batch_box[j] for j in [0, 2, 1, 4, 3]] # [batch_idx, y1, x1, y2, x2]
# here use this order is because below writing csv it use again use right order
one_scores = scores[i].tolist()
for cls_idx, score in enumerate(one_scores):
if cls_idx + 1 in class_whitelist:
out_scores[key].append(score)
out_labels[key].append(cls_idx + 1)
out_boxes[key].append(batch_box[1:])
count += 1
return out_boxes, out_labels, out_scores
def write_results(detections, filename):
"""Write prediction results into official formats."""
start = time.time()
boxes, labels, scores = detections
with PathManager.open(filename, "w") as f:
for key in boxes.keys():
for box, label, score in zip(boxes[key], labels[key], scores[key]):
f.write(
"%s,%.03f,%.03f,%.03f,%.03f,%d,%.04f\n"
% (key, box[0], box[1], box[2], box[3], label, score)
)
logger.info("AVA results wrote to %s" % filename)
logger.info("\ttook %d seconds." % (time.time() - start))