-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathREVIN.py
35 lines (29 loc) · 1.37 KB
/
REVIN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
import torch.nn as nn
class RevIN(nn.Module):
def __init__(self, args):
super().__init__()
if args.affine: # args.affine: use affine layers or not
self.gamma = nn.Parameter(torch.ones(args.n_series)) # args.n_series: number of series
self.beta = nn.Parameter(torch.zeros(args.n_series))
else:
self.gamma, self.beta = 1, 0
def forward(self, batch_x, mode='forward', dec_inp=None):
if mode == 'forward':
# batch_x: B*L*D || dec_inp: B*?*D (for xxformers)
self.preget(batch_x)
batch_x = self.forward_process(batch_x)
dec_inp = None if dec_inp is None else self.forward_process(dec_inp)
return batch_x, dec_inp
elif mode == 'inverse':
# batch_x: B*H*D (forecasts)
batch_y = self.inverse_process(batch_x)
return batch_y
def preget(self, batch_x):
self.avg = torch.mean(batch_x, axis=1, keepdim=True).detach() # b*1*d
self.var = torch.var(batch_x, axis=1, keepdim=True).detach() # b*1*d
def forward_process(self, batch_input):
temp = (batch_input - self.avg)/torch.sqrt(self.var + 1e-8)
return temp.mul(self.gamma) + self.beta
def inverse_process(self, batch_input):
return ((batch_input - self.beta) / self.gamma) * torch.sqrt(self.var + 1e-8) + self.avg