forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_weights_only_unpickler.py
492 lines (466 loc) · 22.7 KB
/
_weights_only_unpickler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# Unpickler restricted to loading only state dicts
# Restrict constructing types to a list defined in _get_allowed_globals()
# Restrict BUILD operation to `Tensor`, `Parameter` and `OrderedDict` types only
# Restrict APPEND/APPENDS to `list`
# In `GLOBALS` operation do not do class lookup by name, but rather rely on dictionary
# defined by `_get_allowed_globals()` method, that contains:
# - torch types (Storage, dtypes, Tensor, `torch.Size`),
# - `torch._utils._rebuild` functions.
# - `torch.nn.Parameter`
# - `collections.Counter`
# - `collections.OrderedDict`
# Additionally, users can use an allowlist for adding classes they have deemed as safe using
# `_add_safe_globals()` (`torch.serialization.add_safe_globals`)
# `_clear_safe_globals()` (`torch.serialization.clear_safe_globals`)
# `_get_safe_globals()` (`torch.serialization.get_safe_globals`)
# Based of https://github.com/python/cpython/blob/main/Lib/pickle.py
# Expected to be useful for loading PyTorch model weights
# For example:
# data = urllib.request.urlopen('https://download.pytorch.org/models/resnet50-0676ba61.pth').read()
# buf = io.BytesIO(data)
# weights = torch.load(buf, weights_only = True)
import functools as _functools
from collections import Counter, OrderedDict
from inspect import getattr_static
from pickle import (
APPEND,
APPENDS,
BINFLOAT,
BINGET,
BININT,
BININT1,
BININT2,
BINPERSID,
BINPUT,
BINUNICODE,
BUILD,
bytes_types,
decode_long,
EMPTY_DICT,
EMPTY_LIST,
EMPTY_SET,
EMPTY_TUPLE,
GLOBAL,
LONG1,
LONG_BINGET,
LONG_BINPUT,
MARK,
NEWFALSE,
NEWOBJ,
NEWTRUE,
NONE,
PROTO,
REDUCE,
SETITEM,
SETITEMS,
SHORT_BINSTRING,
STOP,
TUPLE,
TUPLE1,
TUPLE2,
TUPLE3,
UnpicklingError,
)
from struct import unpack
from sys import maxsize, modules
from typing import Any, Dict, List, Type
import torch
_marked_safe_globals_list: List[Any] = []
def _add_safe_globals(safe_globals: List[Any]):
global _marked_safe_globals_list
_marked_safe_globals_list += safe_globals
def _get_safe_globals() -> List[Any]:
global _marked_safe_globals_list
return _marked_safe_globals_list
def _clear_safe_globals():
global _marked_safe_globals_list
_marked_safe_globals_list = []
# Separate from _get_allowed_globals because of the lru_cache on _get_allowed_globals
# For example if user had a script like
# torch.load(file_a)
# torch.serialization._add_safe_globals([torch.foo])
# torch.load(file_b)
# the dynamic additions to safe_globals would not be picked up by
# _get_allowed_globals due to the lru_cache
def _get_user_allowed_globals():
rc: Dict[str, Any] = {}
for f in _marked_safe_globals_list:
rc[f"{f.__module__}.{f.__name__}"] = f
return rc
def _tensor_rebuild_functions():
return {
torch._utils._rebuild_parameter,
torch._utils._rebuild_parameter_with_state,
torch._utils._rebuild_qtensor,
torch._utils._rebuild_tensor,
torch._utils._rebuild_tensor_v2,
torch._utils._rebuild_tensor_v3,
torch._utils._rebuild_sparse_tensor,
torch._utils._rebuild_meta_tensor_no_storage,
torch._utils._rebuild_nested_tensor,
torch._utils._rebuild_wrapper_subclass,
}
# Unpickling machinery
@_functools.lru_cache(maxsize=1)
def _get_allowed_globals():
rc: Dict[str, Any] = {
"collections.OrderedDict": OrderedDict,
"collections.Counter": Counter,
"torch.nn.parameter.Parameter": torch.nn.Parameter,
"torch.serialization._get_layout": torch.serialization._get_layout,
"torch.Size": torch.Size,
"torch.Tensor": torch.Tensor,
"torch.device": torch.device,
}
# dtype
for t in torch.storage._dtype_to_storage_type_map().keys():
rc[str(t)] = t
for t in torch.storage._new_dtypes():
rc[str(t)] = t
# Tensor classes
for tt in torch._tensor_classes:
rc[f"{tt.__module__}.{tt.__name__}"] = tt
# Storage classes
for ts in torch._storage_classes:
if ts not in (torch.storage.TypedStorage, torch.storage.UntypedStorage):
# Wrap legacy storage types in a dummy class
rc[f"{ts.__module__}.{ts.__name__}"] = torch.serialization.StorageType(
ts.__name__
)
else:
rc[f"{ts.__module__}.{ts.__name__}"] = ts
# Quantization specific
for qt in [
torch.per_tensor_affine,
torch.per_tensor_symmetric,
torch.per_channel_affine,
torch.per_channel_symmetric,
torch.per_channel_affine_float_qparams,
]:
rc[str(qt)] = qt
# Rebuild functions
for f in _tensor_rebuild_functions():
rc[f"torch._utils.{f.__name__}"] = f
# Handles Tensor Subclasses, Tensor's with attributes.
# NOTE: It calls into above rebuild functions for regular Tensor types.
rc["torch._tensor._rebuild_from_type_v2"] = torch._tensor._rebuild_from_type_v2
return rc
class Unpickler:
def __init__(self, file, *, encoding: str = "bytes"):
self.encoding = encoding
self.readline = file.readline
self.read = file.read
self.memo: Dict[int, Any] = {}
# tensor subclass types found from GLOBAL instructions that have passed the criteria
# to be allowed as the second argument to `torch._tensor._rebuild_from_type_v2`
# This enables rebuilding of tensor subclasses defined outside the `torch` package.
# See [Note: Criteria for allowing out-of-core tensor subclasses] for details on the criteria.
self.tensor_subclasses_found: Dict[str, Type] = {}
def load(self):
"""Read a pickled object representation from the open file.
Return the reconstituted object hierarchy specified in the file.
"""
self.metastack = []
self.stack: List[Any] = []
self.append = self.stack.append
read = self.read
readline = self.readline
while True:
key = read(1)
if not key:
raise EOFError
assert isinstance(key, bytes_types)
# Risky operators
if key[0] == GLOBAL[0]:
module = readline()[:-1].decode("utf-8")
name = readline()[:-1].decode("utf-8")
full_path = f"{module}.{name}"
if full_path in _get_allowed_globals():
self.append(_get_allowed_globals()[full_path])
elif full_path in _get_user_allowed_globals():
self.append(_get_user_allowed_globals()[full_path])
else:
# The logic in this branch handles user-defined tensor subclasses.
# We can automatically allow and raise and error for anything that is not provably safe.
# [Note: Criteria for allowing out-of-core tensor subclasses]
# GLOBAL '<module>.<tensor subclass>' instructions will get the class and
# push the string (not the actual type) while adding the type to the dictionary keyed
# by the string onto the unpickler's stack if they satisfy the following conditions:
# (1) The <module> that defines them is in `sys.modules`
# (we will use getattr_static to access it to ensure no code execution)
# (2) They inherit from `torch.Tensor`
# (2) The class is not overriding any of the `torch.Tensor` methods listed here:
# `__getattr__`, `__get__`, `__getattribute__`, `__setstate__`, `__set__`,
# and `tp_alloc`
# The methods that we ban overriding were selected in a test-driven manner
# by overriding every callable method on a tensor subclass and determinining
# which might get called during unpickling.
# When executing REDUCE, the string will be appropriately converted back to the type only
# for `torch._tensor._rebuild_from_type_v2` as other use of the class could use methods
# we didn't audit.
if module == "__builtin__":
raise RuntimeError(
f"Unsupported global: GLOBAL {full_path} was not an allowed global by default. "
"Please use `torch.serialization.add_safe_globals` to allowlist this global "
"if you trust this class/function."
)
elif module not in modules:
# TODO: add a link here to a doc that explains to users what we mean by trust
raise RuntimeError(
f"Found GLOBAL `{full_path}` instruction in the pickle file but `{full_path}` was "
f"not in the pre-defined list of allowed globals that are considered safe by the "
"weights_only unpickler for rebuilding state_dicts. This is the expected behavior if "
f"`{full_path}` is a class or function that is not in the list of allowed globals "
f"If `{full_path}` is NOT a tensor subclass, you might consider"
"`torch.serialization.add_safe_globals` if it is appropriate. However, if it is a "
"user-defined tensor subclass not defined in the `torch` package, this error might arise "
f"as we expect `{module}` to be present in `sys.modules` (i.e. it "
"must be imported in the current environment), but this was not the case. "
f"If you intend to unpickle a tensor subclass `{full_path}` please import `{name}` from "
f"`{module}`. Note that having this imported will *only* allow the type `{full_path}` to "
"be passed as the second argument to `torch._tensor._rebuild_from_type_v2`, which should "
"enable the tensor subclass to be unpickled without any arbitrary code execution as long "
# If the user imports and these are overridden the next error will prompt them to use
# torch.serialization.add_safe_globals.
"a sa pre-defined list of methods called when unpickling are not overridden. In "
"particular, the methods are `__getattr__`, `__get__`, `__getattribute__`, `__setstate__`, "
"`__set__`, as well as the implementation of `tp_alloc`."
)
else:
try:
class_type = getattr_static(modules[module], name)
except AttributeError as e:
raise AttributeError(
"For safety during weights_only loading, we use inspect.getattr_state to "
f"get {name} from {module}, if {module} implements the descriptor protocol, "
"__getattr__ or __getattribute__ these will not be called."
) from e
# None of the objects here contain any data from the pickle so this is safe
if isinstance(class_type, type) and issubclass(
class_type, torch.Tensor
):
# getattr is called by the getattr call in `_rebuild_from_type_v2`
custom_get_attribute = (
class_type.__getattribute__
is not torch.Tensor.__getattribute__
)
custom_get = (
getattr_static(class_type, "__get__", None) is not None
)
custom_get_attr = (
getattr_static(class_type, "__getattr__", None)
is not None
)
# Tensor.__setstate__ might be called in `_rebuild_from_type_v2`
custom_set_state = (
class_type.__setstate__ is not torch.Tensor.__setstate__
)
# setattr is called in `torch._utils._set_obj_state`
custom_set_attr = (
class_type.__setattr__ is not object.__setattr__
)
custom_set = (
getattr_static(class_type, "__set__", None) is not None
)
# tp_alloc is called by `Tensor._rebuild_wrapper_subclass` and `Tensor.as_subclass`
has_custom_tp_alloc = (
not torch._C._check_tp_alloc_is_default(class_type)
)
custom_methods = {
"__getattribute__": custom_get_attribute,
"__getattr__": custom_get_attr,
"__get__": custom_get,
"__setattr__": custom_set_attr,
"__set__": custom_set,
"__setstate__": custom_set_state,
"tp_alloc": has_custom_tp_alloc,
}
if any(custom_methods.values()):
error = ""
for k, v in custom_methods.items():
error += f" {k}={v}"
raise RuntimeError(
f"Trying to unpickle tensor subclass `{full_path}` that has defined a custom "
f"version for one of these methods:{error}. Please check whether you trust these "
"methods and allowlist the subclass with `torch.serialization.add_safe_globals` if so."
)
# push the string full_path onto the stack (in REBUILD, there is special logic to
# access this from tensor_subclasses_found for rebuild_from_type_v2)
self.tensor_subclasses_found[full_path] = class_type
self.append(full_path)
else:
raise RuntimeError(
f"Unsupported global: GLOBAL {full_path} was not an allowed global by default. "
"Please use `torch.serialization.add_safe_globals` to allowlist this global "
"if you trust this class/function."
)
elif key[0] == NEWOBJ[0]:
args = self.stack.pop()
cls = self.stack.pop()
if cls is not torch.nn.Parameter:
raise RuntimeError(f"Trying to instantiate unsupported class {cls}")
self.append(torch.nn.Parameter(*args))
elif key[0] == REDUCE[0]:
args = self.stack.pop()
func = self.stack[-1]
if (
func not in _get_allowed_globals().values()
and func not in _get_user_allowed_globals().values()
):
raise RuntimeError(
f"Trying to call reduce for unrecognized function {func}"
)
# Special handling for tensor subclass type found in GLOBAL that is pushed
# onto stack as str to prevent it from being used anywhere except the
# second arg of _rebuild_from_type_v2 and within argument tuple for _rebuild_wrapper_subclass
# _rebuild_from_type_v2 is called with args (func, type, func_args, state)
# where both type and, when func is rebuild_wrapper_subclass, func_args[0] could be the subclass type
# Since we pushed these subclass types onto the stack as strings, convert them to the actual
# type here.
if func is torch._tensor._rebuild_from_type_v2 and type(args[1]) is str:
args_after = args[2:]
if (
args[0] is torch._utils._rebuild_wrapper_subclass
and type(args[2][0]) is str
):
new_arg_tuple = (
self.tensor_subclasses_found[args[2][0]],
) + args[2][1:]
args_after = (new_arg_tuple,) + args[3:]
args = (
args[:1] + (self.tensor_subclasses_found[args[1]],) + args_after
)
self.stack[-1] = func(*args)
elif key[0] == BUILD[0]:
state = self.stack.pop()
inst = self.stack[-1]
if type(inst) is torch.Tensor:
# Legacy unpickling
inst.set_(*state)
elif type(inst) is torch.nn.Parameter:
inst.__setstate__(state)
elif type(inst) is OrderedDict:
inst.__dict__.update(state)
else:
raise RuntimeError(
f"Can only build Tensor, parameter or dict objects, but got {type(inst)}"
)
# Stack manipulation
elif key[0] == APPEND[0]:
item = self.stack.pop()
list_obj = self.stack[-1]
if type(list_obj) is not list:
raise RuntimeError(
f"Can only append to lists, but got {type(list_obj)}"
)
list_obj.append(item)
elif key[0] == APPENDS[0]:
items = self.pop_mark()
list_obj = self.stack[-1]
if type(list_obj) is not list:
raise RuntimeError(
f"Can only extend lists, but got {type(list_obj)}"
)
list_obj.extend(items)
elif key[0] == SETITEM[0]:
(v, k) = (self.stack.pop(), self.stack.pop())
self.stack[-1][k] = v
elif key[0] == SETITEMS[0]:
items = self.pop_mark()
for i in range(0, len(items), 2):
self.stack[-1][items[i]] = items[i + 1]
elif key[0] == MARK[0]:
self.metastack.append(self.stack)
self.stack = []
self.append = self.stack.append
elif key[0] == TUPLE[0]:
items = self.pop_mark()
self.append(tuple(items))
elif key[0] == TUPLE1[0]:
self.stack[-1] = (self.stack[-1],)
elif key[0] == TUPLE2[0]:
self.stack[-2:] = [(self.stack[-2], self.stack[-1])]
elif key[0] == TUPLE3[0]:
self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])]
# Basic types construction
elif key[0] == NONE[0]:
self.append(None)
elif key[0] == NEWFALSE[0]:
self.append(False)
elif key[0] == NEWTRUE[0]:
self.append(True)
elif key[0] == EMPTY_TUPLE[0]:
self.append(())
elif key[0] == EMPTY_LIST[0]:
self.append([])
elif key[0] == EMPTY_DICT[0]:
self.append({})
elif key[0] == EMPTY_SET[0]:
self.append(set())
elif key[0] == BININT[0]:
self.append(unpack("<i", read(4))[0])
elif key[0] == BININT1[0]:
self.append(self.read(1)[0])
elif key[0] == BININT2[0]:
self.append(unpack("<H", read(2))[0])
elif key[0] == BINFLOAT[0]:
self.append(unpack(">d", self.read(8))[0])
elif key[0] == BINUNICODE[0]:
strlen = unpack("<I", read(4))[0]
if strlen > maxsize:
raise RuntimeError("String is too long")
strval = str(read(strlen), "utf-8", "surrogatepass")
self.append(strval)
elif key[0] == SHORT_BINSTRING[0]:
strlen = read(1)[0]
strdata = read(strlen)
if self.encoding != "bytes":
strdata = strdata.decode(self.encoding, "strict")
self.append(strdata)
elif key[0] == BINPERSID[0]:
pid = self.stack.pop()
# Only allow persistent load of storage
if type(pid) is not tuple and not type(pid) is not int:
raise RuntimeError(
f"persistent_load id must be tuple or int, but got {type(pid)}"
)
if (
type(pid) is tuple
and len(pid) > 0
and torch.serialization._maybe_decode_ascii(pid[0]) != "storage"
):
raise RuntimeError(
f"Only persistent_load of storage is allowed, but got {pid[0]}"
)
self.append(self.persistent_load(pid))
elif key[0] in [BINGET[0], LONG_BINGET[0]]:
idx = (read(1) if key[0] == BINGET[0] else unpack("<I", read(4)))[0]
self.append(self.memo[idx])
elif key[0] in [BINPUT[0], LONG_BINPUT[0]]:
i = (read(1) if key[0] == BINPUT[0] else unpack("<I", read(4)))[0]
if i < 0:
raise ValueError("negative argument")
self.memo[i] = self.stack[-1]
elif key[0] == LONG1[0]:
n = read(1)[0]
data = read(n)
self.append(decode_long(data))
# First and last deserializer ops
elif key[0] == PROTO[0]:
# Read and ignore proto version
read(1)[0]
elif key[0] == STOP[0]:
rc = self.stack.pop()
return rc
else:
raise RuntimeError(f"Unsupported operand {key[0]}")
# Return a list of items pushed in the stack after last MARK instruction.
def pop_mark(self):
items = self.stack
self.stack = self.metastack.pop()
self.append = self.stack.append
return items
def persistent_load(self, pid):
raise UnpicklingError("unsupported persistent id encountered")
def load(file, *, encoding: str = "ASCII"):
return Unpickler(file, encoding=encoding).load()