forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeta_tracer.py
268 lines (216 loc) · 9.79 KB
/
meta_tracer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import torch
import torch.fx
import warnings
import functools
import builtins
from typing import Any, Callable, Dict, Optional, Union
def embedding_override(self, input):
return torch.empty(*input.shape, self.weight.shape[-1], device='meta')
def nn_layernorm_override(self, input):
return input
def torch_relu_override(x):
return x
def torch_nn_relu_override(self, x):
return x
def functional_relu_override(x, inplace=False):
assert not inplace, 'dont support inplace functional.relu for metatensor analysis'
return x
def torch_where_override(condition, x, y):
# torch.where returns the broadcasted tensor of condition, x, and y,
# so hack it by using addition
return condition.to(device='meta') + x.to(device='meta') + y.to(device='meta')
def torch_abs_override(input, *, out=None):
assert out is None, 'Dont support in-place abs for MetaTensor analysis'
return input
manual_meta_overrides : Dict[Callable, Callable] = {
torch.nn.Embedding: embedding_override,
torch.nn.LayerNorm: nn_layernorm_override,
torch.relu: torch_relu_override,
torch.nn.functional.relu: functional_relu_override,
torch.nn.ReLU: torch_nn_relu_override,
torch.where: torch_where_override,
torch.abs: torch_abs_override,
}
def gen_constructor_wrapper(target):
@functools.wraps(target)
def wrapper(*args, **kwargs):
proxy = None
def check_has_proxy(v):
if isinstance(v, torch.fx.Proxy):
nonlocal proxy
proxy = v
torch.fx.node.map_aggregate(args, check_has_proxy)
torch.fx.node.map_aggregate(kwargs, check_has_proxy)
if proxy is not None:
return proxy.tracer.create_proxy('call_function', target, args, kwargs)
else:
return target(*args, **kwargs)
return wrapper, target
class MetaProxy(torch.fx.Proxy):
def install_tensor_meta(self, tensor_meta):
self._tensor_meta = tensor_meta
def size(self, dim=None):
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
return self._tensor_meta.size(*[dim] if dim else [])
return self.tracer.create_proxy('call_method', 'size', (self, dim) if dim else (self,), {})
def dim(self):
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
return self._tensor_meta.dim()
return self.tracer.create_proxy('call_method', 'dim', (self,), {})
@property
def shape(self):
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
return self._tensor_meta.shape
return self.tracer.create_proxy('call_function', builtins.getattr, (self, 'shape'), {})
@property
def dtype(self):
if hasattr(self, '_tensor_meta') and self._tensor_meta is not None:
return self._tensor_meta.dtype
return self.tracer.create_proxy('call_function', builtins.getattr, (self, 'dtype'), {})
@property
def device(self):
# Hack so we can track when devices are used. During meta-tensor propagation,
# replace these values with a constant 'meta'
return MetaDeviceAttribute(self, 'device')
def __getattr__(self, k):
if k == '_tensor_meta':
return self.__getattribute__(k)
# note: not added to the graph yet, if this is a method call
# we peephole optimize to the method invocation
return MetaAttribute(self, k)
class MetaAttribute(MetaProxy):
def __init__(self, root, attr: str):
self.root = root
self.attr = attr
self.tracer = root.tracer
self._node = None
@property
def node(self):
# the node for attributes is added lazily, since most will just be method calls
# which do not rely on the getitem call
if self._node is None:
self._node = self.tracer.create_proxy('call_function', getattr, (self.root, self.attr), {}).node
return self._node
def __call__(self, *args, **kwargs):
return self.tracer.create_proxy('call_method', self.attr, (self.root,) + args, kwargs)
class MetaDeviceAttribute(MetaAttribute):
pass
def proxys_to_metas(v):
if isinstance(v, MetaDeviceAttribute):
return 'meta'
if isinstance(v, torch.fx.Proxy):
assert isinstance(v, MetaProxy), f'Expected MetaProxy but got {type(v)}'
assert hasattr(v, '_tensor_meta'), 'MetaProxy does not have an associated meta'
return v._tensor_meta
return v
class MetaTracer(torch.fx.Tracer):
allow_insert_stateless_mods : bool = True
_TORCH_METHODS_TO_PATCH = ['arange', 'zeros', 'ones', 'full_like', 'eye']
def create_proxy(self, kind, target, args, kwargs, name=None, type_expr=None, proxy_factory_fn=None):
rv = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn)
if kind == 'placeholder' and target in self.meta_args:
rv.install_tensor_meta(self.meta_args[target])
return rv
if target in self.orig_fns:
# NOTE: tensor constructors in PyTorch define the `device` argument as
# *kwargs-only*. That is why this works. If you add methods to
# _TORCH_METHODS_TO_PATCH that do not define `device` as kwarg-only,
# this will break and you will likely see issues where we cannot infer
# the size of the output.
if 'device' in kwargs:
kwargs['device'] = 'meta'
try:
args_metas = torch.fx.node.map_aggregate(args, proxys_to_metas)
kwargs_metas = torch.fx.node.map_aggregate(kwargs, proxys_to_metas)
if kind == 'call_function':
meta_target = manual_meta_overrides.get(target, target)
meta_out = meta_target(*args_metas, **kwargs_metas)
elif kind == 'call_method':
meta_out = getattr(args_metas[0], target)(*args_metas[1:], **kwargs_metas)
elif kind == 'call_module':
assert hasattr(self, 'orig_forward')
self._disable_module_getattr = True
try:
mod = self.root.get_submodule(target)
mod_type = type(mod)
if mod_type in manual_meta_overrides:
meta_out = manual_meta_overrides[mod_type](mod, *args_metas, **kwargs_metas)
else:
meta_out = self.orig_forward(*args_metas, **kwargs_metas)
finally:
self._disable_module_getattr = False
elif kind == 'get_attr':
self._disable_module_getattr = True
try:
attr_itr = self.root
atoms = target.split('.')
for atom in atoms:
attr_itr = getattr(attr_itr, atom)
assert isinstance(attr_itr, torch.Tensor)
meta_out = attr_itr.to(device='meta')
finally:
self._disable_module_getattr = False
else:
return rv
# TODO
assert isinstance(rv, torch.fx.Proxy), 'Dont support composite output yet'
rv.install_tensor_meta(meta_out)
except Exception as e:
warnings.warn(f'Could not compute metadata for {kind} target {target}: {e}')
return rv
def getattr(self, attr, attr_val, parameter_proxy_cache):
if getattr(self, '_disable_module_getattr', False):
return attr_val
else:
return super().getattr(attr, attr_val, parameter_proxy_cache)
def call_module(self, m, forward, args, kwargs):
self.orig_forward = forward
return super().call_module(m, forward, args, kwargs)
def _insert_module_as_submodule(self, mod: torch.nn.Module) -> str:
"""
Helper method which tries to insert a module that was not declared as submodule.
"""
idx = 0
mod_name = mod.__class__.__name__.lower()
path = f"{mod_name}_{idx}"
while hasattr(self.root, path):
path = f"{mod_name}_{idx}"
idx += 1
self.root.add_module(path, mod)
return path
def path_of_module(self, mod: torch.nn.Module) -> str:
try:
return super().path_of_module(mod)
except NameError as e:
if self.allow_insert_stateless_mods and len(list(mod.parameters())) == 0 and len(list(mod.buffers())) == 0:
path = self._insert_module_as_submodule(mod)
self.prev_module = path
return path
raise
def proxy(self, node):
return MetaProxy(node, self)
def trace(self, root, meta_args : Dict[str, torch.Tensor], concrete_args=None):
assert isinstance(meta_args, dict)
self.meta_args = meta_args
self.patched_torch_methods = {
target: gen_constructor_wrapper(getattr(torch, target)) for target in self._TORCH_METHODS_TO_PATCH
}
self.orig_fns = set()
for name, (wrapper, orig) in self.patched_torch_methods.items():
setattr(torch, name, wrapper)
self.orig_fns.add(orig)
try:
graph = super().trace(root, concrete_args)
graph._tracer_extras = {'meta_args': meta_args}
return graph
finally:
for name, (_, orig) in self.patched_torch_methods.items():
setattr(torch, name, orig)
def symbolic_trace(root : Union[torch.nn.Module, Callable[..., Any]],
meta_args : Optional[Dict[str, torch.Tensor]] = None,
concrete_args: Optional[Dict[str, Any]] = None) -> torch.fx.GraphModule:
tracer = MetaTracer()
graph = tracer.trace(root, meta_args, concrete_args)
name = root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__
gm = torch.fx.GraphModule(tracer.root, graph, name)
return gm