forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnadam.py
638 lines (573 loc) · 24.9 KB
/
nadam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
from typing import cast, List, Optional, Tuple, Union
import torch
from torch import Tensor
from .optimizer import (
_capturable_doc,
_default_to_fused_or_foreach,
_differentiable_doc,
_disable_dynamo_if_unsupported,
_dispatch_sqrt,
_foreach_doc,
_get_capturable_supported_devices,
_get_scalar_dtype,
_get_value,
_maximize_doc,
_stack_if_compiling,
_use_grad_for_differentiable,
_view_as_real,
Optimizer,
ParamsT,
)
__all__ = ["NAdam", "nadam"]
class NAdam(Optimizer):
def __init__(
self,
params: ParamsT,
lr: float = 2e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-8,
weight_decay: float = 0,
momentum_decay: float = 4e-3,
decoupled_weight_decay: bool = False,
*,
foreach: Optional[bool] = None,
maximize: bool = False,
capturable: bool = False,
differentiable: bool = False,
):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
if not 0.0 <= weight_decay:
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
if not 0.0 <= momentum_decay:
raise ValueError(f"Invalid momentum_decay value: {momentum_decay}")
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
momentum_decay=momentum_decay,
decoupled_weight_decay=decoupled_weight_decay,
maximize=maximize,
foreach=foreach,
capturable=capturable,
differentiable=differentiable,
)
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("maximize", False)
group.setdefault("foreach", None)
group.setdefault("capturable", False)
group.setdefault("differentiable", False)
group.setdefault("decoupled_weight_decay", False)
for p in group["params"]:
p_state = self.state.get(p, [])
if len(p_state) != 0:
if not torch.is_tensor(p_state["step"]):
step_val = float(p_state["step"])
p_state["step"] = (
torch.tensor(
step_val, dtype=_get_scalar_dtype(), device=p.device
)
if group["capturable"]
else torch.tensor(step_val, dtype=_get_scalar_dtype())
)
if not torch.is_tensor(p_state["mu_product"]):
mu_prod_val = p_state["mu_product"]
p_state["mu_product"] = (
torch.tensor(
mu_prod_val, dtype=_get_scalar_dtype(), device=p.device
)
if group["capturable"]
else torch.tensor(mu_prod_val, dtype=_get_scalar_dtype())
)
def _init_group(
self,
group,
params_with_grad,
grads,
exp_avgs,
exp_avg_sqs,
mu_products,
state_steps,
):
has_complex = False
for p in group["params"]:
if p.grad is not None:
has_complex |= torch.is_complex(p)
params_with_grad.append(p)
if p.grad.is_sparse:
raise RuntimeError("NAdam does not support sparse gradients")
grads.append(p.grad)
state = self.state[p]
# Lazy state initialization
if len(state) == 0:
# note(crcrpar): [special device hosting for step]
# Deliberately host `step` and `mu_product` on CPU if capturable is False.
# This is because kernel launches are costly on CUDA and XLA.
state["step"] = (
torch.zeros((), dtype=_get_scalar_dtype(), device=p.device)
if group["capturable"]
else torch.tensor(0.0, dtype=_get_scalar_dtype())
)
state["mu_product"] = (
torch.ones((), dtype=_get_scalar_dtype(), device=p.device)
if group["capturable"]
else torch.tensor(1.0, dtype=_get_scalar_dtype())
)
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
exp_avgs.append(state["exp_avg"])
exp_avg_sqs.append(state["exp_avg_sq"])
mu_products.append(state["mu_product"])
state_steps.append(state["step"])
return has_complex
@_use_grad_for_differentiable
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
self._cuda_graph_capture_health_check()
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad: List[Tensor] = []
grads: List[Tensor] = []
exp_avgs: List[Tensor] = []
exp_avg_sqs: List[Tensor] = []
mu_products: List[Tensor] = []
state_steps: List[Tensor] = []
beta1, beta2 = cast(Tuple[float, float], group["betas"])
has_complex = self._init_group(
group,
params_with_grad,
grads,
exp_avgs,
exp_avg_sqs,
mu_products,
state_steps,
)
nadam(
params_with_grad,
grads,
exp_avgs,
exp_avg_sqs,
mu_products,
state_steps,
beta1=beta1,
beta2=beta2,
lr=group["lr"],
weight_decay=group["weight_decay"],
momentum_decay=group["momentum_decay"],
eps=group["eps"],
maximize=group["maximize"],
decoupled_weight_decay=group["decoupled_weight_decay"],
foreach=group["foreach"],
capturable=group["capturable"],
differentiable=group["differentiable"],
has_complex=has_complex,
)
return loss
NAdam.__doc__ = (
r"""Implements NAdam algorithm.
.. math::
\begin{aligned}
&\rule{110mm}{0.4pt} \\
&\textbf{input} : \gamma_t \text{ (lr)}, \: \beta_1,\beta_2 \text{ (betas)},
\: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\
&\hspace{13mm} \: \lambda \text{ (weight decay)}, \:\psi \text{ (momentum decay)} \\
&\hspace{13mm} \: \textit{decoupled\_weight\_decay}, \:\textit{maximize} \\
&\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)},
v_0 \leftarrow 0 \text{ ( second moment)} \\[-1.ex]
&\rule{110mm}{0.4pt} \\
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
&\hspace{5mm}\textbf{if} \: \textit{maximize}: \\
&\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{5mm}\textbf{else} \\
&\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{5mm} \theta_t \leftarrow \theta_{t-1} \\
&\hspace{5mm} \textbf{if} \: \lambda \neq 0 \\
&\hspace{10mm}\textbf{if} \: \textit{decoupled\_weight\_decay} \\
&\hspace{15mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\
&\hspace{10mm}\textbf{else} \\
&\hspace{15mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
&\hspace{5mm} \mu_t \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{t \psi} \big) \\
&\hspace{5mm} \mu_{t+1} \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{(t+1)\psi}\big)\\
&\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
&\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\
&\hspace{5mm}\widehat{m_t} \leftarrow \mu_{t+1} m_t/(1-\prod_{i=1}^{t+1}\mu_i)\\[-1.ex]
& \hspace{11mm} + (1-\mu_t) g_t /(1-\prod_{i=1}^{t} \mu_{i}) \\
&\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\
&\hspace{5mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/
\big(\sqrt{\widehat{v_t}} + \epsilon \big) \\
&\rule{110mm}{0.4pt} \\[-1.ex]
&\bf{return} \: \theta_t \\[-1.ex]
&\rule{110mm}{0.4pt} \\[-1.ex]
\end{aligned}
For further details regarding the algorithm we refer to `Incorporating Nesterov Momentum into Adam`_.
"""
+ rf"""
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 2e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
momentum_decay (float, optional): momentum momentum_decay (default: 4e-3)
decoupled_weight_decay (bool, optional): whether to use decoupled weight
decay as in AdamW to obtain NAdamW (default: False)
{_foreach_doc}
{_maximize_doc}
{_capturable_doc}
{_differentiable_doc}
.. _Incorporating Nesterov Momentum into Adam:
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
.. _Decoupled Weight Decay Regularization:
https://arxiv.org/abs/1711.05101
"""
)
def _single_tensor_nadam(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
mu_products: List[Tensor],
state_steps: List[Tensor],
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
momentum_decay: float,
eps: float,
decoupled_weight_decay: bool,
maximize: bool,
capturable: bool,
differentiable: bool,
has_complex: bool,
):
for i, param in enumerate(params):
grad = grads[i] if not maximize else -grads[i]
exp_avg = exp_avgs[i]
exp_avg_sq = exp_avg_sqs[i]
mu_product = mu_products[i]
step_t = state_steps[i]
if torch.is_complex(param):
param = torch.view_as_real(param)
grad = torch.view_as_real(grad)
exp_avg = torch.view_as_real(exp_avg)
exp_avg_sq = torch.view_as_real(exp_avg_sq)
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
if not torch._utils.is_compiling() and capturable:
capturable_supported_devices = _get_capturable_supported_devices()
assert (
param.device.type == mu_product.device.type == step_t.device.type
and param.device.type in capturable_supported_devices
), (
f"If capturable=True, params, mu_products and state_steps must be "
f"on supported devices: {capturable_supported_devices}."
)
# update step
step_t += 1
if capturable:
step = step_t
else:
step = _get_value(step_t)
bias_correction2 = 1 - beta2**step
if weight_decay != 0:
if decoupled_weight_decay:
# Perform stepweight decay
param.mul_(1 - lr * weight_decay)
else:
grad = grad.add(param, alpha=weight_decay)
# calculate the momentum cache \mu^{t} and \mu^{t+1}
mu = beta1 * (1.0 - 0.5 * (0.96 ** (step * momentum_decay)))
mu_next = beta1 * (1.0 - 0.5 * (0.96 ** ((step + 1) * momentum_decay)))
# update mu_product
mu_product *= mu
# decay the first and second moment running average coefficient
exp_avg.lerp_(grad, 1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = exp_avg_sq.div(bias_correction2).sqrt()
if differentiable or capturable:
denom = denom.add(eps)
# Make autograd track the operations
# by updating the grad and exp_avg directly and not using the
# scalar "value" argument of addcdiv.
mu_product_next = mu_product * mu_next
grad = grad * (-lr * (1.0 - mu) / (1.0 - mu_product))
exp_avg = exp_avg * (-lr * mu_next / (1.0 - mu_product_next))
param.addcdiv_(grad, denom)
param.addcdiv_(exp_avg, denom)
else:
mu_product_next = _get_value(mu_product) * mu_next
denom.add_(eps)
param.addcdiv_(
grad, denom, value=(-lr * (1.0 - mu) / (1.0 - _get_value(mu_product)))
)
param.addcdiv_(
exp_avg, denom, value=(-lr * mu_next) / (1.0 - mu_product_next)
)
def _multi_tensor_nadam(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
mu_products: List[Tensor],
state_steps: List[Tensor],
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
momentum_decay: float,
eps: float,
decoupled_weight_decay: bool,
maximize: bool,
capturable: bool,
differentiable: bool,
has_complex: bool,
):
if len(params) == 0:
return
assert not differentiable, "_foreach ops don't support autograd"
# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
if not torch._utils.is_compiling() and capturable:
capturable_supported_devices = _get_capturable_supported_devices(
supports_xla=False
)
assert all(
p.device.type == mp.device.type == step.device.type
and p.device.type in capturable_supported_devices
for p, mp, step in zip(params, mu_products, state_steps)
), f"If capturable=True, params, mu_products, and state_steps must be on supported devices: {capturable_supported_devices}."
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
[params, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps]
)
for (
grouped_params,
grouped_grads,
grouped_exp_avgs,
grouped_exp_avg_sqs,
grouped_mu_products,
grouped_state_steps,
), _ in grouped_tensors.values():
# handle complex
if has_complex:
_view_as_real(
grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_avg_sqs
)
if maximize:
grouped_grads = torch._foreach_neg(grouped_grads) # type: ignore[assignment]
# Update steps
# If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
# and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
# wrapped it once now. The alpha is required to assure we go to the right overload.
if grouped_state_steps[0].is_cpu:
torch._foreach_add_(
grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0
)
else:
torch._foreach_add_(grouped_state_steps, 1)
if weight_decay != 0:
if decoupled_weight_decay:
# Perform stepweight decay
torch._foreach_mul_(grouped_params, 1 - lr * weight_decay)
else:
# Re-use the intermediate memory (grouped_grads) already allocated for maximize
if maximize:
torch._foreach_add_(
grouped_grads, grouped_params, alpha=weight_decay
)
else:
grouped_grads = torch._foreach_add( # type: ignore[assignment]
grouped_grads, grouped_params, alpha=weight_decay
)
# Decay the first and second moment running average coefficient
torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1)
torch._foreach_mul_(grouped_exp_avg_sqs, beta2)
torch._foreach_addcmul_(
grouped_exp_avg_sqs, grouped_grads, grouped_grads, 1 - beta2
)
exp_avg_sq_sqrt = torch._foreach_sqrt(grouped_exp_avg_sqs)
bias_correction_sqrt: Union[Tuple[Tensor, ...], List[Tensor]]
mus: Union[Tuple[Tensor, ...], List[Tensor]]
mu_nexts: Union[Tuple[Tensor, ...], List[Tensor]]
if capturable:
# mus will be beta1 * (1 - 0.5 * 0.96 ** (step * momentum_decay))
exponent = torch._foreach_mul(grouped_state_steps, momentum_decay)
mus = torch._foreach_pow(0.96, exponent)
torch._foreach_mul_(mus, -0.5)
torch._foreach_add_(mus, 1.0)
torch._foreach_mul_(mus, beta1)
# mu_nexts will be beta1 * (1 - 0.5 * 0.96 ** ((step + 1) * momentum_decay))
torch._foreach_add_(exponent, momentum_decay)
mu_nexts = torch._foreach_pow(0.96, exponent)
torch._foreach_mul_(mu_nexts, -0.5)
torch._foreach_add_(mu_nexts, 1.0)
torch._foreach_mul_(mu_nexts, beta1)
# save peak memory as we don't need exponent anymore
del exponent
bias_correction_sqrt = torch._foreach_pow(beta2, grouped_state_steps)
# foreach_sub doesn't allow a scalar as the first arg
torch._foreach_sub_(bias_correction_sqrt, 1.0)
torch._foreach_neg_(bias_correction_sqrt)
torch._foreach_sqrt_(bias_correction_sqrt)
else:
bias_correction_sqrt = [
_dispatch_sqrt(1 - beta2 ** _get_value(step))
for step in grouped_state_steps
]
mus = [
beta1 * (1.0 - 0.5 * (0.96 ** (_get_value(step) * momentum_decay)))
for step in grouped_state_steps
]
mu_nexts = [
beta1
* (1.0 - 0.5 * (0.96 ** ((_get_value(step) + 1) * momentum_decay)))
for step in grouped_state_steps
]
# update mu_products
torch._foreach_mul_(grouped_mu_products, mus)
torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
torch._foreach_add_(exp_avg_sq_sqrt, eps)
# explicitly delete bias_correction refs to save memory
del bias_correction_sqrt
if capturable:
# Build up the step_size multiplier for grad, reusing mus' memory
torch._foreach_sub_(mus, 1.0)
torch._foreach_mul_(mus, lr)
# foreach_sub doesn't allow a scalar as the first arg
denom = torch._foreach_sub(grouped_mu_products, 1.0)
torch._foreach_neg_(denom)
torch._foreach_div_(mus, denom)
# - lr * (1 - mu) / (1 - mu_product)
step_size_grads = mus
# explicitly delete denom to save memory
del denom
# Build up the step_size multiplier for exp_avg, reusing mu_nexts' memory
denom = torch._foreach_mul(grouped_mu_products, mu_nexts)
torch._foreach_mul_(mu_nexts, lr)
# foreach_sub doesn't allow a scalar as the first arg, but it's okay because
# we need a negative here anyway
torch._foreach_sub_(denom, 1.0)
torch._foreach_div_(mu_nexts, denom)
# - lr * mu_next / (1 - mu_product * mu_next)
step_size_expavg = mu_nexts
# explicitly delete denom to save memory
del denom
# we cannot inplace into step_size_grads cuz it is a list of ScalarTensors
# and mul'ing with grouped_grads will result in a list of bigger Tensors
numerator = torch._foreach_mul(step_size_grads, grouped_grads)
torch._foreach_addcmul_(numerator, step_size_expavg, grouped_exp_avgs)
# finally, update params
torch._foreach_addcdiv_(grouped_params, numerator, exp_avg_sq_sqrt)
else:
step_size_grads = _stack_if_compiling(
[
(_get_value(lr) * (1.0 - mu) / (1.0 - _get_value(mu_product))) * -1
for mu_product, mu in zip(grouped_mu_products, mus)
]
)
step_size_expavg = _stack_if_compiling(
[
(
_get_value(lr)
* mu_next
/ (1.0 - _get_value(mu_product) * mu_next)
)
* -1
for mu_product, mu_next in zip(grouped_mu_products, mu_nexts)
]
)
torch._foreach_addcdiv_(
grouped_params, grouped_grads, exp_avg_sq_sqrt, step_size_grads # type: ignore[arg-type]
)
torch._foreach_addcdiv_(
grouped_params, grouped_exp_avgs, exp_avg_sq_sqrt, step_size_expavg # type: ignore[arg-type]
)
@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_nadam)
def nadam(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
mu_products: List[Tensor],
state_steps: List[Tensor],
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
decoupled_weight_decay: bool = False,
foreach: Optional[bool] = None,
capturable: bool = False,
differentiable: bool = False,
has_complex: bool = False,
maximize: bool = False,
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
momentum_decay: float,
eps: float,
):
r"""Functional API that performs NAdam algorithm computation.
See :class:`~torch.optim.NAdam` for details.
"""
if not all(isinstance(t, torch.Tensor) for t in state_steps):
raise RuntimeError(
"API has changed, `state_steps` argument must contain a list of singleton tensors"
)
if not all(isinstance(t, torch.Tensor) for t in mu_products):
raise RuntimeError(
"API has changed, `mu_products` argument must contain a list of singleton tensors"
)
if foreach is None:
_, foreach = _default_to_fused_or_foreach(
params, differentiable, use_fused=False
)
if foreach and torch.jit.is_scripting():
raise RuntimeError("torch.jit.script not supported with foreach optimizers")
if foreach and not torch.jit.is_scripting():
func = _multi_tensor_nadam
else:
func = _single_tensor_nadam
func(
params,
grads,
exp_avgs,
exp_avg_sqs,
mu_products,
state_steps,
beta1=beta1,
beta2=beta2,
lr=lr,
weight_decay=weight_decay,
momentum_decay=momentum_decay,
maximize=maximize,
decoupled_weight_decay=decoupled_weight_decay,
eps=eps,
capturable=capturable,
differentiable=differentiable,
has_complex=has_complex,
)