Code from the course: Statistical Mechanics and Computations. It includes exercises from the textbook Statistical Mechanics: Algorithms and Computations by Werner Krauth.
# | Folder | File | Description |
---|---|---|---|
1 | Monte Carlo Algorithms: Direct Sampling & Markov Chain sampling | ||
Lecture | direct_pi.py | Algorithm 1.1 - compute pi using direct sampling | |
direct_pi_multirun.py | Compute pi using multiple runs of direct sampling | ||
markov_pi.py | Calculate pi using Markov Chain Monte Carlo | ||
markov_pi_multirun.py | Calculate pi using multiple runs of Markov Chain Monte Carlo | ||
pebble_basic.py | Demonstrate neighbour table for MCMC-Algorithm 1.6 | ||
pebble_basic_inhomogeneous.py | Demonstrate neighbour table for MCMC-Algorithm 1.6 with inhomogeneous probabilities | ||
Tutorial | pebble_basic.py | Move pebble using neighbour Table 1.3 | |
pebble_basic_movie.py | Move pebble using neighbour Table 1.3 | ||
pebble_basic_multirun.py | Move pebble using neighbour Table 1.3 | ||
pebble_dual_eigen.py | Two games: Illustrate conversion of reducible matrix to irreducible+aperiodic to make motion ergodic | ||
pebble_dual_movie.py | '''Two games: Illustrate conversion of reducible matrix to irreducible+aperiodic to make motion ergodic''' | ||
pebble_multirun_all_histogram.py | Show probability for reaching other cells after 0, 1, 2, ... moves | ||
pebble_multirun_histogram.py | Show probability for reaching other cells after 0, 1, 2, ... moves | ||
pebble_recurrent_eigen.py | Dual pebble: make aperiodic | ||
pebble_recurrent_movie.py | Dual pebble: make aperiodic | ||
pebble_transfer.py | Model Monte Carlo simulation as a transfer matrix, illustrating speed of convergence | ||
pebble_transfer_eigen.py | Eigenvalues and eigenvectors of transfer matrix, illustrating speed of convergence | ||
pebble_transfer_sub.py | Model Monte Carlo simulation as a transfer matrix; subtract equilibrium value to show speed of convergence | ||
Homework | exerciseB.py | Shows that the error of markov_pi follows the law: const / sqrt(N_trials)for large N_trials. The constant is larger (sometimes much larger) than 1.642 and it depends on the stepsize delta. | |
exerciseC.py | Bunching method: compute the error in markov_pi.py from a single run and without knowing the mathematical value of pi. | ||
exerciseC1.py | Bunching method: compute the error in markov_pi.py from a single run and without knowing the mathematical value of pi | ||
exerciseC3.py | Bunching method: compute the error in markov_pi.py from a single run and without knowing the mathematical value of pi | ||
2 | Hard Disks: from classical mechanics to statistical mechancs | ||
Lecture | direct_disks_box.py | Direct sampling of disks in box, tabula rasa | |
direct_disks_box_a1.py | Direct sampling of disks in box, tabula rasa: investigate success rate | ||
direct_disks_box_movie.py | Direct sampling of disks in box, tabula rasa, plotted as movie | ||
direct_disks_box_multirun.py | Direct sampling of disks in box, tabula rasa, multiple runs | ||
direct_disks_box_multirun_b1.py | Generate histogram of x positions by direct sampling of disks in box, tabula rasa | ||
event_disks_box.py | Algorithm 2.1: event-driven molecular dynamics for hard disks in a box | ||
event_disks_box_a3.py | Algorithm 2.1: event-driven molecular dynamics for hard disks in a box. Repeat | ||
event_disks_box_b3.py | Algorithm 2.1: event-driven molecular dynamics for hard disks in a box. Repeat and generate histogram | ||
event_disks_box_movie.py | Algorithm 2.1: event-driven molecular dynamics for hard disks in a box. Repeat. Plotted as movie | ||
markov_disks_box.py | Algorithm 2.2: generating a hard disk configuration from another one using a Markov chain | ||
markov_disks_box_a2.py | Algorithm 2.2: generating a hard disk configuration from another one using a Markov chain | ||
markov_disks_box_movie.py | Algorithm 2.2: generating a hard disk configuration from another one using a Markov chain | ||
markov_disks_box_multirun_b2.py | Algorithm 2.2: generating a hard disk configuration from another one using a Markov chain | ||
Tutorial | direct_discrete.py | Create configuration of rods using tabula rasa to give equiprobable distribution | |
direct_disks_any.py | Compute acceptance probability for hard disks as a function of density | ||
direct_disks_box.py | Algorithm 2.1: event-driven molecular dynamics for hard disks in a box | ||
direct_disks_box_slow.py | Algorithm 2.1: event-driven molecular dynamics for hard disks in a box. Build full set of disks, including invalid, then cull. | ||
direct_disks_multirun.py | Algorithm 2.1: event-driven molecular dynamics for hard disks in a box with periodic boundary conditions: multiple runs to collects stats | ||
direct_disks_multirun_movie.py | Algorithm 2.1: event-driven molecular dynamics for hard disks in a box with periodic boundary conditions: multiple runs to collects stats | ||
random_sequential_discrete.py | Create configuration of rods without tabula rasa: does not give equiprobable distribution | ||
random_sequential_discrete_movie.py | Create configuration of rods without tabula rasa: does not give equiprobable distribution | ||
3 | Entropic Interactions and Phase Transitions | ||
Lecture | direct_pins.py | Algorithm 6.1: direct sampling | |
direct_pins_improved.py | Algorithm 6.1: direct sampling | ||
direct_pins_movie.py | Algorithm 6.1: direct sampling | ||
direct_pins_noreject.py | Algorithm 6.2: rejection free sampling | ||
direct_pins_noreject_movie.py | Algorithm 6.2: rejection free sampling | ||
Tutorial | direct_pins.py | Algorithm 6.1: direct sampling | |
direct_pins_density.py | |||
direct_pins_movie.py | |||
direct_pins_noreject.py | |||
direct_pins_noreject_movie.py | |||
direct_pins_noreject_periodic.py | |||
direct_pins_noreject_periodic_pair.py | |||
Homework | my_markov_disks.py | ||
preparation1.py | |||
preparation2.py | |||
4 | Sampling and Integration | ||
Lecture | direct_sphere_3d.py | ||
direct_sphere_3d_movie.py | |||
direct_surface.py | |||
direct_surface_3d.py | |||
direct_surface_3d_movie.py | |||
gauss_2d.py | |||
gauss_2d_movie.py | |||
gauss_3d.py | |||
gauss_3d_movie.py | |||
gauss_test.py | |||
gauss_test_movie.py | |||
naive_gauss.py | |||
naive_gauss_movie.py | |||
Tutorial | basic_use_random.py | ||
gamma_transform.py | |||
gauss_transform.py | |||
markov_gauss.py | |||
markov_gauss_movie.py | |||
markov_inv_sqrt.py | |||
markov_inv_sqrt_movie.py | |||
naive_ran.py | |||
reject_direct_gauss_cut.py | |||
reject_inv_sqrt_cut.py | |||
tower_discrete.py | |||
walker_test.py | |||
Homework | data-bunch.py | ||
markov_hypersphere.py | |||
markov_hypersphere_C2.py | |||
markov_sphere_3D.py | |||
markov_sphere_4D.py | |||
5 | Quantum Statistical Mechancs 1/3: Density Matrices and Path Integrals | ||
Lecture | harmonic_wavefunction.py | ||
harmonic_wavefunction_check.py | |||
harmonic_wavefunction_check_movie.py | |||
harmonic_wavefunction_movie.py | |||
matrix_square_harmonic.py | |||
matrix_square_harmonic_movie.py | |||
naive_harmonic_path.py | |||
naive_harmonic_path_movie.py | |||
Tutorial | free_periodic_complex_exp.py | ||
free_periodic_complex_exp_movie.py | |||
free_periodic_sine_cosine.py | |||
free_periodic_sine_cosine_movie.py | |||
harmonic_trotter_movie.py | |||
quantum_time_evolution.py | |||
Homework | a2.py | ||
markov_gauss_a1.py | |||
markov_gauss_movie_a1.py | |||
matrix_square_anharmonic_c1.py | |||
matrix_square_anharmonic_c3.py | |||
matrix_square_harmonic_b1.py | |||
path_Integral_b2.py | |||
path_Integral_c2.py | |||
6 | Quantum Statistical Mechancs 2/3: Lévy Quantum Paths | ||
Lecture | continuous_random_walk.py | Construct path using a simple random walk (endpoint is not held fixed) | |
levy_free_path.py | Simple simplementation of Levy Free Path Algorithm | ||
levy_harmonic_path.py | |||
levy_harmonic_path_3D.py | Lévy flight in 3D | ||
levy_harmonic_path_movie.py | |||
naive_harmonic_path.py | Construct path using direct sanpling (inefficient) | ||
naive_path_slice.py | |||
naive_path_slice_movie.py | |||
trivial_free_path.py | Generate a random walk, then pull back as described in Lecture 6, 20:12. Compare result with Lévy free path | ||
Tutorial | naive_boson_trap.py | Enumerate energies in a simple harmonic trap | |
naive_single_particle.py | Enumerate states for Bosons, i.e. indistinguisgable particles | ||
Homework | a1.py | ||
a2.py | |||
a3.py | |||
b1.py | |||
b2.py | |||
b3.py | |||
c1.py | |||
c2.py | |||
7 | Quantum Statistical Mechancs 3/3: Bose-Einstein Condensation | ||
Lecture | markov_harmonic_bosons.py | ||
markov_harmonic_bosons_movie.py | |||
permutation_sample.py | |||
Tutorial | canonic_harmonic_recursion.py | ||
canonic_harmonic_recursion_movie.py | |||
direct_harmonic_bosons.py | |||
markov_harmonic_bosons.py | |||
permutation_sample.py | |||
permutation_sample_cycle.py | |||
Homework | a1.py | ||
a2.py | |||
a2a.py | |||
a3.py | |||
b1.py | |||
b2.py | |||
c1.py | |||
8 | Ising Model: Enumerations and Monte-Carlo Algorithms | ||
Lecture | cluster_ising.py | ||
cluster_ising_movie.py | |||
energy_ising.py | |||
enumerate_ising.py | |||
enumerate_ising_mod.py | |||
enumerate_ising_movie.py | |||
gray.py | |||
markov_ising.py | |||
markov_ising_movie.py | |||
thermo_ising.py | |||
thermo_ising_movie.py | |||
Tutorial | heatbath_ising.py | ||
heatbath_ising_random_map.py | |||
heatbath_ising_random_map_movie.py | |||
Homework | A1.py | ||
A2.py | |||
B1.py | |||
B2.py | |||
C1.py | |||
C2.py | |||
9 | Dynamic Monte Carlo, Simulated Annealing | ||
Lecture | dynamic_ising.py | ||
dynamic_ising_patch.py | |||
fast_spin_dynamics.py | |||
fast_throw.py | |||
naive_spin_dynamics.py | |||
naive_spin_dynamics_movie.py | |||
naive_throw.py | |||
Tutorial | direct_sphere_disks.py | ||
direct_sphere_disks_any.py | |||
direct_sphere_disks_any_movie.py | |||
direct_sphere_disks_movie.py | |||
example_pylab_visualization.py | |||
markov_sphere_disks.py | |||
resize_disks.py | |||
simulated_annealing.py | |||
simulated_annealing_movie.py | |||
Homework | A1.py | ||
A2.py | |||
B1.py | |||
C1.py | |||
C2.py | |||
10 | The Alpha and Omega of Monte Carlo | ||
Lecture | direct_gamma.py | Integral of x**gamma, illustrating need for importance sampling | |
direct_gamma_average.py | Integral of x**gamma, illustrating need for importance sampling | ||
direct_gamma_average_movie.py | Histogram of Integral of x**gamma, illustrating need for importance sampling | ||
direct_gamma_average_rescaled.py | |||
direct_gamma_average_rescaled_movie.py | Integral of x**gamma: rescale, plot histograms, and compare with Lévy distribution | ||
direct_gamma_running.py | |||
direct_gamma_running_movie.py | |||
direct_needle.py | Buffon's experiment (with cheat) | ||
direct_needle_patch.py | Buffon's experiment |
# | File | Problem/Algorithm/Description | |
---|---|---|---|
- | template.py | Template for python programs | |
1 | smac.py | Useful functions: BoxMuller, CircleThrowing, and SphereGenerator | |
1.1 | direct-plot.py | Implement Algorithm 1.1. Plot error and investigate relationship with N. | |
- | markov-pi.py | Implement Algorithm 1.2. Plot error and rejection rate. | |
- | direct.py | 1.3 Store state in file | |
- | smacfiletoken.py | ||
- | markov-discrete-pebble.py | 1.4 Use table | |
- | large-markov.py | ||
- | transfer.m | 1.8 Eigenvalues of transfer matrix | |
1.2 | permutation.py | 1.9 Sample permutations using Alg. 1.11 and verify that it generate all 120 permutations of 5 elements equally often | |
- | permutation-histogram.py | ||
- | naivegauss.py | 1.12 Gauss | |
- | direct-surface.py | Monte Carlo simulation of Exercise 2.11 of Chaosbook: in higher dimensions, any two vectors are nearly orthogonal | |
1.3 | binomialconvolution.py | 1.18 Binomial Convolution | |
1.4.2 | direct-gamma.py | 1.22 Importance sampling:Implement Algorithm 1.29, subtract mean value for each sample, and generate histograms of the average of N samples and the rescaled averages. | |
- | direct-gamma-zeta.py | ||
- | markov-zeta.py | Algorithm 1.31, use of Markov Chain to detect non-integrable singularity. | |
1.4.4 | levy-convolution.py | Algorithm 1.32 | |
2.1.4 | spheres2.py | Exercise 2-4: Sinai's system of two large sphere in a box. Show histogram of positions. |
2.2.1||pair-time.py|Algorithm 2.2: Pair collision time for two particles -||md.py|Algorithm 2.3 Pair collision -||md-viz.py|Visualize data generated by md.py -||md-plot.py|Visualize output from md.cpp. Plot distribution of distances from wall, and compare energy histogram with Bolzmann distribution. -|md||Algorithm 2.3 Pair collision -|md|Makefile|Algorithm 2.3 Pair collision -|md|configuration.cpp|Manage a box full of particles -|md|configuration.hpp|Manage a box full of particles -|md|md.cpp|Algorithm 2.3 Pair collision -|md|md.hpp|Algorithm 2.3 Pair collision -|md|particle.cpp|Represents one single particle -|md|particle.hpp|Represents one single particle -||direct-disks.py|Exercise 2.6: directly sample the positions of 4 disks in a square box without periodic boundary conditions, for different covering densities -||hist-plot.py|Exercise 2.6: ... -||geometry.py|Used to implement periodic and aperiodic boundary conditions in Exercises 2.6-2.8 2.2.2||directDisksAny.py| 2.2.3|| 3.1||harmonic_wavefunction.py|Exercise 3.1: verify orthonormality of the solutions to Schroedinger's equation for Simple Harmonic Oscillator -||harmonic_density.py|Exercise 3.2: determine density matrix 3.2||matrix-square.py|Exercise 3.4: implement Alg 3.3, matrix-square -||matrix-square-check.py|Exercise 3.4: check results of matrix squaring against exact solution. -||poeschl-teller.py|Exercise 3.5: plot Poeschl-Teller potential and investigate density matrix and partition function 3.3|||The Feynman path integral 3.4|||Pair density matrices 3.5|||Geometry of Paths 4||| Bosons 5.1||gray.py|Algorithm 5.2: Gray code for spins {1,...N}. -||enumerate-ising.py|Algorithm 5.3: single flip enumeration for the Ising model. -||ising.py|Algorithm 5.3: Single spin-slip enumeration for Ising model -||ising-stats.py|Figure 6.6 - plot data from ising.py -|ising|catch.hpp|Support for Test harness for enumerate-ising.cpp -|ising|enumerate-ising.cpp|Algorithm 5.3: single flip enumeration for the Ising model. -|ising|enumerate-ising.hpp|Algorithm 5.3: single flip enumeration for the Ising model. -|ising|gray.hpp|Greycode for enumerate-ising.cpp, plus iterator for neighbours -|ising|Makefile|Makefile for enumerate-ising.cpp -|ising|nbr.hpp|Calculate neighbours for enumerate-ising.cpp -|ising|test-gray.cpp|Tests for gray.hpp -|ising|test-nbr.cpp|Tests for nbr.cpp -|ising|tests.cpp|Test harness for enumerate-ising.cpp 5.2|||The Ising model - Monte-Carlo algorithm 5.3|||Generalized Ising models 6|||Entropic Forces 7|||Dynamic Monte Carlo Methods
File | Description |
---|---|
Q1.py | |
Q4-1.py | |
Q4-2.py | |
Q7.py | |
Q10.py | |
Q11.py |
File | Description |
---|---|
walker.py | Used to create README.MD from file tree |