forked from MorvanZhou/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfor_you_to_practice.py
50 lines (33 loc) · 1.16 KB
/
for_you_to_practice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# View more python tutorials on my Youtube and Youku channel!!!
# Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
# Youku video tutorial: http://i.youku.com/pythontutorial
# 11 - classification example
"""
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
from __future__ import print_function
import numpy as np
import theano
import theano.tensor as T
def compute_accuracy(y_target, y_predict):
correct_prediction = np.equal(y_predict, y_target)
accuracy = np.sum(correct_prediction)/len(correct_prediction)
return accuracy
rng = np.random
N = 400 # training sample size
feats = 784 # number of input variables
# generate a dataset: D = (input_values, target_class)
D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))
# Declare Theano symbolic variables
# initialize the weights and biases
# Construct Theano expression graph
# Compile
# Training
for i in range(500):
pass
if i % 50 == 0:
pass
print("target values for D:")
print('')
print("prediction on D:")
print('')