forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_quant_post_hpo.py
152 lines (136 loc) · 5.74 KB
/
test_quant_post_hpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
sys.path.append(".")
sys.path[0] = os.path.join(os.path.dirname("__file__"), os.path.pardir)
import paddle
import paddle.dataset.mnist as reader
import unittest
from paddleslim.quant import quant_post_hpo
from static_case import StaticCase
sys.path.append("../demo")
from models import MobileNet
from layers import conv_bn_layer
import numpy as np
class TestQuantPostHpoCase1(StaticCase):
def test_accuracy(self):
image = paddle.static.data(
name='image', shape=[None, 1, 28, 28], dtype='float32')
label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
model = MobileNet()
out = model.net(input=image, class_dim=10)
cost = paddle.nn.functional.loss.cross_entropy(input=out, label=label)
avg_cost = paddle.mean(x=cost)
acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)
optimizer = paddle.optimizer.Momentum(
momentum=0.9,
learning_rate=0.01,
weight_decay=paddle.regularizer.L2Decay(4e-5))
optimizer.minimize(avg_cost)
main_prog = paddle.static.default_main_program()
val_prog = main_prog.clone(for_test=True)
place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda(
) else paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(paddle.static.default_startup_program())
def transform(x):
return np.reshape(x, [1, 28, 28])
train_dataset = paddle.vision.datasets.MNIST(
mode='train', backend='cv2', transform=transform)
test_dataset = paddle.vision.datasets.MNIST(
mode='test', backend='cv2', transform=transform)
train_loader = paddle.io.DataLoader(
train_dataset,
places=place,
feed_list=[image, label],
drop_last=True,
batch_size=64,
return_list=False)
valid_loader = paddle.io.DataLoader(
test_dataset,
places=place,
feed_list=[image, label],
batch_size=64,
return_list=False)
def sample_generator_creator():
def __reader__():
for data in test_dataset:
image, label = data
image = np.expand_dims(image, axis=0)
label = np.expand_dims(label, axis=0)
yield image, label
return __reader__
def train(program):
iter = 0
for data in train_loader():
cost, top1, top5 = exe.run(
program,
feed=data,
fetch_list=[avg_cost, acc_top1, acc_top5])
iter += 1
if iter % 100 == 0:
print(
'train iter={}, avg loss {}, acc_top1 {}, acc_top5 {}'.
format(iter, cost, top1, top5))
def test(program, outputs=[avg_cost, acc_top1, acc_top5]):
iter = 0
result = [[], [], []]
for data in valid_loader():
cost, top1, top5 = exe.run(program,
feed=data,
fetch_list=outputs)
iter += 1
if iter % 100 == 0:
print('eval iter={}, avg loss {}, acc_top1 {}, acc_top5 {}'.
format(iter, cost, top1, top5))
result[0].append(cost)
result[1].append(top1)
result[2].append(top5)
print(' avg loss {}, acc_top1 {}, acc_top5 {}'.format(
np.mean(result[0]), np.mean(result[1]), np.mean(result[2])))
return np.mean(result[1]), np.mean(result[2])
train(main_prog)
top1_1, top5_1 = test(val_prog)
paddle.fluid.io.save_inference_model(
dirname='./test_quant_post_hpo',
feeded_var_names=[image.name, label.name],
target_vars=[avg_cost, acc_top1, acc_top5],
main_program=val_prog,
executor=exe,
model_filename='model',
params_filename='params')
quant_post_hpo(
exe,
place,
"./test_quant_post_hpo",
"./test_quant_post_hpo_inference",
train_sample_generator=sample_generator_creator(),
eval_sample_generator=sample_generator_creator(),
model_filename="model",
params_filename="params",
save_model_filename='__model__',
save_params_filename='__params__',
runcount_limit=2)
quant_post_prog, feed_target_names, fetch_targets = paddle.fluid.io.load_inference_model(
dirname='./test_quant_post_hpo_inference',
executor=exe,
model_filename='__model__',
params_filename='__params__')
top1_2, top5_2 = test(quant_post_prog, fetch_targets)
print("before quantization: top1: {}, top5: {}".format(top1_1, top5_1))
print("after quantization: top1: {}, top5: {}".format(top1_2, top5_2))
if __name__ == '__main__':
unittest.main()