-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemp.py
216 lines (189 loc) · 9.57 KB
/
temp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import numpy as np
import pandas as pd
import cv2
import math
import mmcv
import torch
from mmdet.apis import init_detector, inference_detector
from sklearn.metrics import confusion_matrix
def truncate(number, digits):
stepper = 10.0 ** digits
return math.trunc(stepper * number) / stepper
def cal_intersect(boxA, boxB):
# determine the (x, y)-coordinates of the intersection rectangle
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
# compute the area of intersection rectangle
interArea = max(0, xB - xA) * max(0, yB - yA)
boxAArea = (boxA[2]-boxA[0]) * (boxA[3]-boxA[1])
boxBArea = (boxB[2]-boxB[0]) * (boxB[3]-boxB[1])
return max(interArea/boxBArea, interArea/boxAArea)
def drop_inside_bboxes(boxes, clss,iou_the=0.3):
'''
boxes: [[2187, 666, 2238, 723, 0.56], [2070, 602, 2185, 759, 0.56], [572, 1462, 709, 1588, 0.7], [2312, 1564, 2482, 1671, 0.9]]
cls = ['BanPianYing', 'BanPianYing', 'BanPianYing', 'BanPianYing']
'''
assert len(boxes) == len(clss)
d = {}
for i in range(len(boxes)):
d[str(boxes[i][0:4])] = clss[i]
original_bboxes = boxes[:]
boxes.sort(key=lambda x: x[4], reverse=True)
group = np.array(boxes)
out_array = []
out_cls = []
while len(group) != 0:
del_idx = []
for i, item in enumerate(group):
min_intersection_ratio = cal_intersect(group[0][0:4], group[i][0:4])
if min_intersection_ratio >= iou_the:
del_idx.append(i)
out_array.append([x for x in group[0][0:4].tolist()] + [group[0][-1]])
group = np.delete(group, del_idx, axis=0)
for element in out_array:
out_cls.append(d[str(element[0:4])])
return out_array, out_cls
def pred(model,img_path,crop,thresh=0.1,iou_s=0.1):
def restore_coordinate(boxes_s_original,pts):
boxes_s_restore = []
for box in boxes_s_original:
boxes_s_restore.append([int(box[0]+pts[0]),int(box[1]+pts[1]),int(box[2]+pts[0]),int(box[3]+pts[1]),truncate(box[4], 3)])
return boxes_s_restore
boxesr = []
clses_final = []
[right_lung_crop,left_lung_crop,right_feimen_crop,left_feimen_crop] = crop
if len(right_lung_crop) == 0 or len(left_lung_crop) == 0:
return boxesr, clses_final
# concact right left lung
[ax1,ay1,ax2,ay2] = right_lung_crop
[bx1,by1,bx2,by2] = left_lung_crop
cx1 = min([ax1,bx1])
cy1 = min([ay1,by1])
cx2 = max([ax2,bx2])
cy2 = max([ay2,by2])
pts_list = [[cx1,cy1,cx2,cy2]]
cls_names = ['WYY','BanPianYing']
img_original = cv2.imread(img_path)
for pts in pts_list:
img_crop = img_original[pts[1]:pts[3],pts[0]:pts[2]]
result = inference_detector(model, img_crop)
bbox_result, segm_result = result, None
bboxes_np = np.vstack(bbox_result)
labels_np = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_result)
]
labels_np = np.concatenate(labels_np)
inds = np.where(bboxes_np[:, -1] >= thresh)[0]
boxes_s = bboxes_np[inds, :].tolist()
clses_idx = labels_np[inds].tolist()
clses = [cls_names[i] for i in clses_idx]
boxes_s_original, clses_original = drop_inside_bboxes(boxes_s, clses,iou_the=iou_s)
boxes_s_restore = restore_coordinate(boxes_s_original,pts)
for i, clse in enumerate(clses_original):
if clse not in ['WYY','meaningless'] and cal_intersect(boxes_s_restore[i],right_feimen_crop)==0 and cal_intersect(boxes_s_restore[i],left_feimen_crop)==0:
boxesr.append(boxes_s_restore[i])
clses_final.append(clses_original[i])
return boxesr, clses_final
def confusion_matrix_one(gt_np,pred_np):
cm = confusion_matrix(gt_np, pred_np)
fp = cm[0,1]
fn = cm[1,0]
tp = cm[1,1]
tn = cm[0,0]
recall = tp/(tp+fn) # recall
precision = tp/(tp+fp)
fpr = fp/(tp+fp) # False discovery rate
f1_score = 2*recall*precision/(recall+precision) # F1 score
cls_stats = 'recall {:.2f}%, fpr {:.2f}%, f1_score {}'.format(recall*100,fpr*100,f1_score)
print(cls_stats)
print(cm)
def vis(img_path,boxesr,clses,crop,output_dir,score=0.1):
assert len(boxesr) == len(clses)
[right_lung_crop,left_lung_crop,right_feimen_crop,left_feimen_crop] = crop
img = cv2.imread(img_path)
if len(right_feimen_crop)>0:
cv2.rectangle(img,(right_feimen_crop[0],right_feimen_crop[1]),(right_feimen_crop[2],right_feimen_crop[3]),(0,255,255),2)
if len(left_feimen_crop)>0:
cv2.rectangle(img,(left_feimen_crop[0],left_feimen_crop[1]),(left_feimen_crop[2],left_feimen_crop[3]),(0,255,255),2)
if len(right_lung_crop)>0:
cv2.rectangle(img,(right_lung_crop[0],right_lung_crop[1]),(right_lung_crop[2],right_lung_crop[3]),(255,0,0),2)
if len(left_lung_crop)>0:
cv2.rectangle(img,(left_lung_crop[0],left_lung_crop[1]),(left_lung_crop[2],left_lung_crop[3]),(255,0,0),2)
for i,box in enumerate(boxesr):
if box[4] < score:
continue
cv2.putText(img, clses[i]+'_'+str(box[4]), (box[0], box[1]),cv2.FONT_HERSHEY_SIMPLEX,1,(0,0,255),1,cv2.LINE_AA)
cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), (0,0,255),2)
img_name = os.path.basename(img_path)
cv2.imwrite(os.path.join(output_dir,img_name), img)
if __name__ == '__main__':
from timeit import default_timer as timer
import json
import shutil
from tqdm import tqdm
from pycocotools.coco import COCO
score = 0.1
config_file = '/data/steven/project/Object_Detection_coastal/dr_wrapper/DR_models_configs/dr2_3_BanPianYing_formal_cfg.py'
pth_model = '/data/steven/project/Object_Detection_coastal/dr_wrapper/DR_models_configs/dr2_3_BanPianYing_formal.pth'
# config_file = '/data/steven/project/Object_Detection_coastal/mmdetection_project/saved_cfgs/1_BPY/BPY_0913_3300_crop_stage2_T1/cascade_rcnn_dconv_c3_c5_r50_fpn_1x_alub.py'
# pth_model = '/data/steven/project/Object_Detection_coastal/mmdetection_project/output/1_BPY/BPY_dataset_BPY_0913_3300_crop_stage2_T1/cascade_rcnn_dconv_c3_c5_r50_fpn_1x_alub/epoch_21.pth'
start = timer()
model = init_detector(config_file, pth_model)
elapsed_time = round(timer() - start,2)
print('{} model loaded {}s {}'.format('-'*20,elapsed_time,'-'*20))
single_test = False
if single_test:
# im_name = '/data/steven/project/Object_Detection_coastal/dr_wrapper/test_data/0_single_test_img/PN038159.jpg'
# im_name = '/data/steven/project/Object_Detection_coastal/dr_wrapper/test_data/0_test_img_original/PN038161.jpg'
# im_name = '/data/steven/project/Object_Detection_coastal/dataser_raw/0_All_orginal_image_real/orginal_img/PN019926.jpg'
# im_name = '/data/steven/project/Object_Detection_coastal/dr_wrapper/test_data/0_single_test_img/a802321aaa95b9c3d3a2c0a8d23e57d6.jpg'
im_name = '/data/steven/project/Object_Detection_coastal/dr_wrapper/test_data/banpianying_test/0822/1.3.12.2.1107.5.3.33.4700.11.201901021002240953-1.jpg'
pts_list = [[1375, 532, 2455, 2129], [238, 487, 1318, 2184]]
start = timer()
boxesr, clses = pred(model,im_name,pts_list)
print('_'*100)
print(boxesr, clses)
vis(im_name, boxesr, 'BanPianYing')
elapsed_time = round(timer() - start,2)
print('{} model pred {}s {}'.format('-'*20,elapsed_time,'-'*20))
else:
import tensorflow as tf
from dr1_10_8in1_crop_formal import init_sess,find_model
tfmodel = '/data/steven/project/Object_Detection_coastal/dr_wrapper/DR_models_configs/dr1_10_8in1_crop_formal.ckpt'
sess, net = init_sess(tfmodel)
print('Loaded network {:s}'.format(tfmodel))
input_dir = '/data/steven/project/Object_Detection_coastal/Classfication/dataset_raw/4_senchu/images_raw_anno/original_img/'
val_dataS = '/data/steven/project/Object_Detection_coastal/Classfication/dataset_raw/4_senchu/label/senchu_unbalanced_val.txt'
shenchu_fp = '/data/steven/project/Object_Detection_coastal/Classfication/dataset_raw/4_senchu/images_raw_anno/BPY_pred_result/fp'
shenchu_tp = '/data/steven/project/Object_Detection_coastal/Classfication/dataset_raw/4_senchu/images_raw_anno/BPY_pred_result/tp'
with open(val_dataS,'r') as f:
line_list = [x.rstrip('\n') for x in f.readlines()]
img_list = [x.split()[0] for x in line_list]
gt_list = [int(x.split()[-1]) for x in line_list]
pred_list = []
for i, img_name in enumerate(tqdm(img_list)):
img_path = os.path.join(input_dir,img_name)
output_dict = find_model(sess, net, img_path)
crop = [output_dict['right_lung_crop'], output_dict['left_lung_crop'],
output_dict['right_feimen_crop'],output_dict['left_feimen_crop']]
if len(crop[0])>0 and len(crop[1])>0:
boxesr, clses = pred(model,img_path,crop)
print('boxesr: ', boxesr, 'clses: ', clses)
if len(boxesr)>0:
pred_list.append(1)
if gt_list[i]==1:
vis(img_path,boxesr,clses,crop,shenchu_tp,score)
else:
vis(img_path,boxesr,clses,crop,shenchu_fp,score)
else:
pred_list.append(0)
else:
'!'*100
print(img_name, ' has no lung_crop!')
assert 1>2
assert len(pred_list)==len(gt_list),'length of pred_list and gt_list not equal!'
confusion_matrix_one(np.array(gt_list),np.array(pred_list))