forked from PointCloudLibrary/pcl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiterative_closest_point.cpp
218 lines (185 loc) · 8.81 KB
/
iterative_closest_point.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id: normal_estimation.cpp 6746 2012-08-08 01:20:30Z rusu $
*
*/
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/console/print.h>
#include <pcl/console/time.h>
#include <pcl/console/parse.h>
#include <pcl/registration/icp.h>
#include <pcl/registration/correspondence_estimation.h>
#include <pcl/registration/correspondence_estimation_normal_shooting.h>
#include <pcl/registration/transformation_estimation_lm.h>
#include <pcl/registration/correspondence_rejection_one_to_one.h>
#include <pcl/registration/correspondence_rejection_median_distance.h>
#include <pcl/registration/correspondence_rejection_sample_consensus.h>
#include <pcl/registration/correspondence_rejection_trimmed.h>
#include <pcl/registration/correspondence_rejection_var_trimmed.h>
using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;
using namespace pcl::registration;
Eigen::Vector4f translation;
Eigen::Quaternionf orientation;
void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s input_source.pcd input_target.pcd output.pcd [optional_arguments]\n", argv[0]);
}
bool
loadCloud (const std::string &filename, pcl::PCLPointCloud2 &cloud)
{
TicToc tt;
print_highlight ("Loading "); print_value ("%s ", filename.c_str ());
tt.tic ();
if (loadPCDFile (filename, cloud, translation, orientation) < 0)
return (false);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud.width * cloud.height); print_info (" points]\n");
print_info ("Available dimensions: "); print_value ("%s\n", getFieldsList (cloud).c_str ());
return (true);
}
void
compute (const pcl::PCLPointCloud2::ConstPtr &source,
const pcl::PCLPointCloud2::ConstPtr &target,
pcl::PCLPointCloud2 &transformed_source)
{
// Convert data to PointCloud<T>
PointCloud<PointNormal>::Ptr src (new PointCloud<PointNormal>);
PointCloud<PointNormal>::Ptr tgt (new PointCloud<PointNormal>);
fromPCLPointCloud2 (*source, *src);
fromPCLPointCloud2 (*target, *tgt);
// Estimate
TicToc tt;
tt.tic ();
print_highlight (stderr, "Computing ");
#define Scalar double
//#define Scalar float
TransformationEstimationLM<PointNormal, PointNormal, Scalar>::Ptr te (new TransformationEstimationLM<PointNormal, PointNormal, Scalar>);
//TransformationEstimationSVD<PointNormal, PointNormal, Scalar>::Ptr te (new TransformationEstimationSVD<PointNormal, PointNormal, Scalar>);
CorrespondenceEstimation<PointNormal, PointNormal, double>::Ptr cens (new CorrespondenceEstimation<PointNormal, PointNormal, double>);
//CorrespondenceEstimationNormalShooting<PointNormal, PointNormal, PointNormal>::Ptr cens (new CorrespondenceEstimationNormalShooting<PointNormal, PointNormal, PointNormal>);
//CorrespondenceEstimationNormalShooting<PointNormal, PointNormal, PointNormal, double>::Ptr cens (new CorrespondenceEstimationNormalShooting<PointNormal, PointNormal, PointNormal, double>);
cens->setInputSource (src);
cens->setInputTarget (tgt);
//cens->setSourceNormals (src);
CorrespondenceRejectorOneToOne::Ptr cor_rej_o2o (new CorrespondenceRejectorOneToOne);
CorrespondenceRejectorMedianDistance::Ptr cor_rej_med (new CorrespondenceRejectorMedianDistance);
cor_rej_med->setInputSource<PointNormal> (src);
cor_rej_med->setInputTarget<PointNormal> (tgt);
CorrespondenceRejectorSampleConsensus<PointNormal>::Ptr cor_rej_sac (new CorrespondenceRejectorSampleConsensus<PointNormal>);
cor_rej_sac->setInputSource (src);
cor_rej_sac->setInputTarget (tgt);
cor_rej_sac->setInlierThreshold (0.005);
cor_rej_sac->setMaximumIterations (10000);
CorrespondenceRejectorVarTrimmed::Ptr cor_rej_var (new CorrespondenceRejectorVarTrimmed);
cor_rej_var->setInputSource<PointNormal> (src);
cor_rej_var->setInputTarget<PointNormal> (tgt);
CorrespondenceRejectorTrimmed::Ptr cor_rej_tri (new CorrespondenceRejectorTrimmed);
IterativeClosestPoint<PointNormal, PointNormal, Scalar> icp;
icp.setCorrespondenceEstimation (cens);
icp.setTransformationEstimation (te);
icp.addCorrespondenceRejector (cor_rej_o2o);
//icp.addCorrespondenceRejector (cor_rej_var);
//icp.addCorrespondenceRejector (cor_rej_med);
//icp.addCorrespondenceRejector (cor_rej_tri);
//icp.addCorrespondenceRejector (cor_rej_sac);
icp.setInputSource (src);
icp.setInputTarget (tgt);
icp.setMaximumIterations (1000);
icp.setTransformationEpsilon (1e-10);
PointCloud<PointNormal> output;
icp.align (output);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points], has converged: ");
print_value ("%d", icp.hasConverged ()); print_info (" with score: %f\n", icp.getFitnessScore ());
Eigen::Matrix4d transformation = icp.getFinalTransformation ();
//Eigen::Matrix4f transformation = icp.getFinalTransformation ();
PCL_DEBUG ("Transformation is:\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n",
transformation (0, 0), transformation (0, 1), transformation (0, 2), transformation (0, 3),
transformation (1, 0), transformation (1, 1), transformation (1, 2), transformation (1, 3),
transformation (2, 0), transformation (2, 1), transformation (2, 2), transformation (2, 3),
transformation (3, 0), transformation (3, 1), transformation (3, 2), transformation (3, 3));
// Convert data back
pcl::PCLPointCloud2 output_source;
toPCLPointCloud2 (output, output_source);
concatenateFields (*source, output_source, transformed_source);
}
void
saveCloud (const std::string &filename, const pcl::PCLPointCloud2 &output)
{
TicToc tt;
tt.tic ();
print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
PCDWriter w;
//w.writeBinaryCompressed (filename, output, translation, orientation);
w.writeASCII (filename, output, translation, orientation);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}
int
main (int argc, char** argv)
{
print_info ("Estimate a rigid transformation using IterativeClosestPoint. For more information, use: %s -h\n", argv[0]);
if (argc < 3)
{
printHelp (argc, argv);
return (-1);
}
bool debug = false;
pcl::console::parse_argument (argc, argv, "-debug", debug);
if (debug)
pcl::console::setVerbosityLevel (pcl::console::L_DEBUG);
// Parse the command line arguments for .pcd files
std::vector<int> p_file_indices;
p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (p_file_indices.size () != 3)
{
print_error ("Need two input PCD files (source, target) and one output PCD file to continue.\n");
return (-1);
}
// Load the input files
pcl::PCLPointCloud2::Ptr src (new pcl::PCLPointCloud2);
if (!loadCloud (argv[p_file_indices[0]], *src)) return (-1);
pcl::PCLPointCloud2::Ptr tgt (new pcl::PCLPointCloud2);
if (!loadCloud (argv[p_file_indices[1]], *tgt)) return (-1);
// Perform the feature estimation
pcl::PCLPointCloud2 output;
compute (src, tgt, output);
// Save into the output file
saveCloud (argv[p_file_indices[2]], output);
return (0);
}