-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdp.py
202 lines (171 loc) · 7.89 KB
/
dp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# 为了 Python2 玩家们
from __future__ import print_function, division
# 第三方
import tensorflow as tf
from sklearn.metrics import confusion_matrix
import numpy as np
# 我们自己
import load
train_samples, train_labels = load._train_samples, load._train_labels
test_samples, test_labels = load._test_samples, load._test_labels
print('Training set', train_samples.shape, train_labels.shape)
print(' Test set', test_samples.shape, test_labels.shape)
image_size = load.image_size
num_labels = load.num_labels
num_channels = load.num_channels
def get_chunk(samples, labels, chunkSize):
"""
Iterator/Generator: get a batch of data
这个函数是一个迭代器/生成器,用于每一次只得到 chunkSize 这么多的数据
用于 for loop, just like range() function
"""
if len(samples) != len(labels):
raise Exception('Length of samples and labels must equal')
stepStart = 0 # initial step
i = 0
while stepStart < len(samples):
stepEnd = stepStart + chunkSize
if stepEnd < len(samples):
yield i, samples[stepStart:stepEnd], labels[stepStart:stepEnd]
i += 1
stepStart = stepEnd
class Network():
def __init__(self, num_hidden, batch_size):
"""
@num_hidden: 隐藏层的节点数量
@batch_size:因为我们要节省内存,所以分批处理数据。每一批的数据量。
"""
self.batch_size = batch_size
self.test_batch_size = 500
# Hyper Parameters
self.num_hidden = num_hidden
# Graph Related
self.graph = tf.Graph()
self.tf_train_samples = None
self.tf_train_labels = None
self.tf_test_samples = None
self.tf_test_labels = None
self.tf_test_prediction = None
# 统计
self.merged = None
# 初始化
self.define_graph()
self.session = tf.Session(graph=self.graph)
self.writer = tf.summary.FileWriter('./board', self.graph)
def define_graph(self):
"""
定义我的的计算图谱
"""
with self.graph.as_default():
# 这里只是定义图谱中的各种变量
with tf.name_scope('inputs'):
self.tf_train_samples = tf.placeholder(
tf.float32, shape=(self.batch_size, image_size, image_size, num_channels), name='tf_train_samples'
)
self.tf_train_labels = tf.placeholder(
tf.float32, shape=(self.batch_size, num_labels), name='tf_train_labels'
)
self.tf_test_samples = tf.placeholder(
tf.float32, shape=(self.test_batch_size, image_size, image_size, num_channels),
name='tf_test_samples'
)
# fully connected layer 1, fully connected
with tf.name_scope('fc1'):
fc1_weights = tf.Variable(
tf.truncated_normal([image_size * image_size, self.num_hidden], stddev=0.1), name='fc1_weights'
)
fc1_biases = tf.Variable(tf.constant(0.1, shape=[self.num_hidden]), name='fc1_biases')
tf.summary.histogram('fc1_weights', fc1_weights)
tf.summary.histogram('fc1_biases', fc1_biases)
# fully connected layer 2 --> output layer
with tf.name_scope('fc2'):
fc2_weights = tf.Variable(
tf.truncated_normal([self.num_hidden, num_labels], stddev=0.1), name='fc2_weights'
)
fc2_biases = tf.Variable(tf.constant(0.1, shape=[num_labels]), name='fc2_biases')
tf.summary.histogram('fc2_weights', fc2_weights)
tf.summary.histogram('fc2_biases', fc2_biases)
# 想在来定义图谱的运算
def model(data):
# fully connected layer 1
shape = data.get_shape().as_list()
reshape = tf.reshape(data, [shape[0], shape[1] * shape[2] * shape[3]])
with tf.name_scope('fc1_model'):
fc1_model = tf.matmul(reshape, fc1_weights) + fc1_biases
hidden = tf.nn.relu(fc1_model)
# fully connected layer 2
with tf.name_scope('fc2_model'):
return tf.matmul(hidden, fc2_weights) + fc2_biases
# Training computation.
logits = model(self.tf_train_samples)
with tf.name_scope('loss'):
self.loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=self.tf_train_labels)
)
tf.summary.scalar('Loss', self.loss)
# Optimizer.
with tf.name_scope('optimizer'):
self.optimizer = tf.train.GradientDescentOptimizer(0.0001).minimize(self.loss)
# Predictions for the training, validation, and test data.
with tf.name_scope('predictions'):
self.train_prediction = tf.nn.softmax(logits, name='train_prediction')
self.test_prediction = tf.nn.softmax(model(self.tf_test_samples), name='test_prediction')
self.merged = tf.summary.merge_all()
def run(self):
"""
用到Session
"""
# private function
def print_confusion_matrix(confusionMatrix):
print('Confusion Matrix:')
for i, line in enumerate(confusionMatrix):
print(line, line[i] / np.sum(line))
a = 0
for i, column in enumerate(np.transpose(confusionMatrix, (1, 0))):
a += (column[i] / np.sum(column)) * (np.sum(column) / 26000)
print(column[i] / np.sum(column), )
print('\n', np.sum(confusionMatrix), a)
with self.session as session:
tf.initialize_all_variables().run()
# 训练
print('Start Training')
# batch 1000
for i, samples, labels in get_chunk(train_samples, train_labels, chunkSize=self.batch_size):
_, l, predictions, summary = session.run(
[self.optimizer, self.loss, self.train_prediction, self.merged],
feed_dict={self.tf_train_samples: samples, self.tf_train_labels: labels}
)
self.writer.add_summary(summary, i)
# labels is True Labels
accuracy, _ = self.accuracy(predictions, labels)
if i % 50 == 0:
print('Minibatch loss at step %d: %f' % (i, l))
print('Minibatch accuracy: %.1f%%' % accuracy)
#
# 测试
accuracies = []
confusionMatrices = []
for i, samples, labels in get_chunk(test_samples, test_labels, chunkSize=self.test_batch_size):
result = self.test_prediction.eval(feed_dict={self.tf_test_samples: samples})
accuracy, cm = self.accuracy(result, labels, need_confusion_matrix=True)
accuracies.append(accuracy)
confusionMatrices.append(cm)
print('Test Accuracy: %.1f%%' % accuracy)
print(' Average Accuracy:', np.average(accuracies))
print('Standard Deviation:', np.std(accuracies))
print_confusion_matrix(np.add.reduce(confusionMatrices))
#
def accuracy(self, predictions, labels, need_confusion_matrix=False):
"""
计算预测的正确率与召回率
@return: accuracy and confusionMatrix as a tuple
"""
_predictions = np.argmax(predictions, 1)
_labels = np.argmax(labels, 1)
cm = confusion_matrix(_labels, _predictions) if need_confusion_matrix else None
# == is overloaded for numpy array
accuracy = (100.0 * np.sum(_predictions == _labels) / predictions.shape[0])
return accuracy, cm
if __name__ == '__main__':
net = Network(num_hidden=128, batch_size=100)
net.run()