-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
61 lines (44 loc) · 1.94 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
These are the util functions.
This code and data is released under the Creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC.) In a nutshell:
# The license is only for non-commercial use (commercial licenses can be obtained from authors).
# The material is provided as-is, with no warranties whatsoever.
# If you publish any code, data, or scientific work based on this, please cite our work.
Technical Paper:
Haoyu Wei, Xin Liu, Xiang Hao, Edmund Y. Lam, and Yifan Peng, "Modeling off-axis diffraction with the least-sampling angular spectrum method," Optica 10, 959-962 (2023)
"""
import numpy as np
from PIL import Image
from matplotlib import cm
def effective_bandwidth(D, wvls=None, is_plane_wave=False, zf=None, s=1.):
if is_plane_wave:
bandwidth = 41.2 * s / D
else:
assert zf is not None, "Wave origin should be provided!"
bandwidth = s * D / wvls / zf
return bandwidth
def save_image(image, save_path, cmap='gray'):
imarray = np.array(image / image.max()) # 0~1
if cmap == 'viridis':
imarray = cm.viridis(imarray)
elif cmap == 'twilight':
imarray = cm.twilight(imarray)
elif cmap == 'magma':
imarray = cm.magma(imarray)
elif cmap == 'plasma':
imarray = cm.plasma(imarray)
im = Image.fromarray(np.uint8(imarray * 255))
im.save(save_path)
def remove_linear_phase(phi, thetaX, thetaY, x, y, k):
linear_phiX = -np.sin(thetaX / 180 * np.pi) * k
linear_phiY = -np.sin(thetaY / 180 * np.pi) * k
xx, yy = np.meshgrid(x, y, indexing='xy')
phi_new = phi - xx * linear_phiX - yy * linear_phiY
return np.remainder(phi_new, 2 * np.pi)
def snr(u_hat, u_ref):
u_hat /= abs(u_hat).max()
u_ref /= abs(u_ref).max()
signal = np.sum(abs(u_hat)**2)
alpha = np.sum(u_hat * np.conjugate(u_ref)) / np.sum(abs(u_ref)**2)
snr = signal / np.sum(abs(u_hat - alpha * u_ref)**2)
return 10 * np.log10(snr)