forked from xorinox/chiapos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathb17phase2.hpp
415 lines (363 loc) · 20.6 KB
/
b17phase2.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
// Copyright 2018 Chia Network Inc
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SRC_CPP_B17PHASE2_HPP_
#define SRC_CPP_B17PHASE2_HPP_
#include "disk.hpp"
#include "entry_sizes.hpp"
#include "b17sort_manager.hpp"
// Backpropagate takes in as input, a file on which forward propagation has been done.
// The purpose of backpropagate is to eliminate any dead entries that don't contribute
// to final values in f7, to minimize disk usage. A sort on disk is applied to each table,
// so that they are sorted by position.
std::vector<uint64_t> b17RunPhase2(
uint8_t *memory,
std::vector<FileDisk> &tmp_1_disks,
std::vector<uint64_t> table_sizes,
uint8_t k,
const uint8_t *id,
const std::string &tmp_dirname,
const std::string &filename,
uint64_t memory_size,
uint32_t num_buckets,
uint32_t log_num_buckets)
{
// An extra bit is used, since we may have more than 2^k entries in a table. (After pruning,
// each table will have 0.8*2^k or less entries).
uint8_t pos_size = k;
std::vector<uint64_t> new_table_sizes = std::vector<uint64_t>(8, 0);
new_table_sizes[7] = table_sizes[7];
std::unique_ptr<b17SortManager> R_sort_manager;
std::unique_ptr<b17SortManager> L_sort_manager;
// Iterates through each table (with a left and right pointer), starting at 6 & 7.
for (int table_index = 7; table_index > 1; --table_index) {
// std::vector<std::pair<uint64_t, uint64_t> > match_positions;
Timer table_timer;
std::cout << "Backpropagating on table " << table_index << std::endl;
uint16_t left_metadata_size = kVectorLens[table_index] * k;
// The entry that we are reading (no metadata)
uint16_t left_entry_size_bytes = EntrySizes::GetMaxEntrySize(k, table_index - 1, false);
// The right entries which we read and write (the already have no metadata, since they
// have been pruned in previous iteration)
uint16_t right_entry_size_bytes = EntrySizes::GetMaxEntrySize(k, table_index, false);
uint64_t left_reader = 0;
uint64_t left_writer = 0;
uint64_t right_reader = 0;
uint64_t right_writer = 0;
// The memory will be used like this, with most memory allocated towards the SortManager,
// since it needs it
// [--------------------------SM/RR-------------------------|-----------LW-------------|--RW--|--LR--]
uint64_t sort_manager_buf_size = floor(kMemSortProportion * memory_size);
uint64_t left_writer_buf_size = 3 * (memory_size - sort_manager_buf_size) / 4;
uint64_t other_buf_sizes = (memory_size - sort_manager_buf_size - left_writer_buf_size) / 2;
uint8_t *right_reader_buf = &(memory[0]);
uint8_t *left_writer_buf = &(memory[sort_manager_buf_size]);
uint8_t *right_writer_buf = &(memory[sort_manager_buf_size + left_writer_buf_size]);
uint8_t *left_reader_buf =
&(memory[sort_manager_buf_size + left_writer_buf_size + other_buf_sizes]);
uint64_t right_reader_buf_entries = sort_manager_buf_size / right_entry_size_bytes;
uint64_t left_writer_buf_entries = left_writer_buf_size / left_entry_size_bytes;
uint64_t right_writer_buf_entries = other_buf_sizes / right_entry_size_bytes;
uint64_t left_reader_buf_entries = other_buf_sizes / left_entry_size_bytes;
uint64_t left_reader_count = 0;
uint64_t right_reader_count = 0;
uint64_t left_writer_count = 0;
uint64_t right_writer_count = 0;
if (table_index != 7) {
R_sort_manager->ChangeMemory(memory, sort_manager_buf_size);
}
L_sort_manager = std::make_unique<b17SortManager>(
left_writer_buf,
left_writer_buf_size,
num_buckets,
log_num_buckets,
left_entry_size_bytes,
tmp_dirname,
filename + ".p2.t" + std::to_string(table_index - 1),
0,
0);
// We will divide by 2, so it must be even.
assert(kCachedPositionsSize % 2 == 0);
// Used positions will be used to mark which posL are present in table R, the rest will
// be pruned
bool used_positions[kCachedPositionsSize];
memset(used_positions, 0, sizeof(used_positions));
bool should_read_entry = true;
// Cache for when we read a right entry that is too far forward
uint64_t cached_entry_sort_key = 0; // For table_index == 7, y is here
uint64_t cached_entry_pos = 0;
uint64_t cached_entry_offset = 0;
uint64_t left_entry_counter = 0; // Total left entries written
// Sliding window map, from old position to new position (after pruning)
uint64_t new_positions[kCachedPositionsSize];
// Sort keys represent the ordering of entries, sorted by (y, pos, offset),
// but using less bits (only k+1 instead of 2k + 9, etc.)
// This is a map from old position to array of sort keys (one for each R entry with this
// pos)
uint64_t old_sort_keys[kReadMinusWrite][kMaxMatchesSingleEntry];
// Map from old position to other positions that it matches with
uint64_t old_offsets[kReadMinusWrite][kMaxMatchesSingleEntry];
// Map from old position to count (number of times it appears)
uint16_t old_counters[kReadMinusWrite];
for (uint16_t &old_counter : old_counters) {
old_counter = 0;
}
bool end_of_right_table = false;
uint64_t current_pos = 0; // This is the current pos that we are looking for in the L table
uint64_t end_of_table_pos = 0;
uint64_t greatest_pos = 0; // This is the greatest position we have seen in R table
// Buffers for reading and writing to disk
uint8_t *left_entry_buf;
uint8_t *new_left_entry_buf;
uint8_t *right_entry_buf;
uint8_t *right_entry_buf_SM = new uint8_t[right_entry_size_bytes];
// Go through all right entries, and keep going since write pointer is behind read
// pointer
while (!end_of_right_table || (current_pos - end_of_table_pos <= kReadMinusWrite)) {
old_counters[current_pos % kReadMinusWrite] = 0;
// Resets used positions after a while, so we use little memory
if ((current_pos - kReadMinusWrite) % (kCachedPositionsSize / 2) == 0) {
if ((current_pos - kReadMinusWrite) % kCachedPositionsSize == 0) {
for (uint32_t i = kCachedPositionsSize / 2; i < kCachedPositionsSize; i++) {
used_positions[i] = false;
}
} else {
for (uint32_t i = 0; i < kCachedPositionsSize / 2; i++) {
used_positions[i] = false;
}
}
}
// Only runs this code if we are still reading the right table, or we still need to
// read more left table entries (current_pos <= greatest_pos), otherwise, it skips
// to the writing of the final R table entries
if (!end_of_right_table || current_pos <= greatest_pos) {
uint64_t entry_sort_key = 0;
uint64_t entry_pos = 0;
uint64_t entry_offset = 0;
while (!end_of_right_table) {
if (should_read_entry) {
if (right_reader_count == new_table_sizes[table_index]) {
// Table R has ended, don't read any more (but keep writing)
end_of_right_table = true;
end_of_table_pos = current_pos;
break;
}
// Need to read another entry at the current position
if (table_index == 7) {
if (right_reader_count % right_reader_buf_entries == 0) {
uint64_t readAmt = std::min(
right_reader_buf_entries * right_entry_size_bytes,
(new_table_sizes[table_index] - right_reader_count) *
right_entry_size_bytes);
tmp_1_disks[table_index].Read(
right_reader, right_reader_buf, readAmt);
right_reader += readAmt;
}
right_entry_buf =
right_reader_buf + (right_reader_count % right_reader_buf_entries) *
right_entry_size_bytes;
} else {
right_entry_buf = R_sort_manager->ReadEntry(right_reader);
right_reader += right_entry_size_bytes;
}
right_reader_count++;
if (table_index == 7) {
// This is actually y for table 7
entry_sort_key = Util::SliceInt64FromBytes(right_entry_buf, 0, k);
entry_pos = Util::SliceInt64FromBytes(right_entry_buf, k, pos_size);
entry_offset = Util::SliceInt64FromBytes(
right_entry_buf, k + pos_size, kOffsetSize);
} else {
entry_pos = Util::SliceInt64FromBytes(right_entry_buf, 0, pos_size);
entry_offset =
Util::SliceInt64FromBytes(right_entry_buf, pos_size, kOffsetSize);
entry_sort_key = Util::SliceInt64FromBytes(
right_entry_buf, pos_size + kOffsetSize, k + 1);
}
} else if (cached_entry_pos == current_pos) {
// We have a cached entry at this position
entry_sort_key = cached_entry_sort_key;
entry_pos = cached_entry_pos;
entry_offset = cached_entry_offset;
} else {
// The cached entry is at a later pos, so we don't read any more R
// entries, read more L entries instead.
break;
}
should_read_entry = true; // By default, read another entry
if (entry_pos + entry_offset > greatest_pos) {
// Greatest L pos that we should look for
greatest_pos = entry_pos + entry_offset;
}
if (entry_pos == current_pos) {
// The current L position is the current R entry
// Marks the two matching entries as used (pos and pos+offset)
used_positions[entry_pos % kCachedPositionsSize] = true;
used_positions[(entry_pos + entry_offset) % kCachedPositionsSize] = true;
uint64_t old_write_pos = entry_pos % kReadMinusWrite;
// Stores the sort key for this R entry
old_sort_keys[old_write_pos][old_counters[old_write_pos]] = entry_sort_key;
// Stores the other matching pos for this R entry (pos6 + offset)
old_offsets[old_write_pos][old_counters[old_write_pos]] =
entry_pos + entry_offset;
++old_counters[old_write_pos];
} else {
// Don't read any more right entries for now, because we haven't caught
// up on the left table yet
should_read_entry = false;
cached_entry_sort_key = entry_sort_key;
cached_entry_pos = entry_pos;
cached_entry_offset = entry_offset;
break;
}
}
// Only process left table if we still have entries - should fix read 0 issue
if(left_reader_count < table_sizes[table_index - 1])
{
// ***Reads a left entry
if (left_reader_count % left_reader_buf_entries == 0) {
uint64_t readAmt = std::min(
left_reader_buf_entries * left_entry_size_bytes,
(table_sizes[table_index - 1] - left_reader_count) * left_entry_size_bytes);
tmp_1_disks[table_index - 1].Read(left_reader, left_reader_buf, readAmt);
left_reader += readAmt;
}
left_entry_buf = left_reader_buf + (left_reader_count % left_reader_buf_entries) *
left_entry_size_bytes;
left_reader_count++;
// If this left entry is used, we rewrite it. If it's not used, we ignore it.
if (used_positions[current_pos % kCachedPositionsSize]) {
uint64_t entry_metadata;
if (table_index > 2) {
// For tables 2-6, the entry is: pos, offset
entry_pos = Util::SliceInt64FromBytes(left_entry_buf, 0, pos_size);
entry_offset =
Util::SliceInt64FromBytes(left_entry_buf, pos_size, kOffsetSize);
} else {
entry_metadata =
Util::SliceInt64FromBytes(left_entry_buf, 0, left_metadata_size);
}
new_left_entry_buf =
left_writer_buf +
(left_writer_count % left_writer_buf_entries) * left_entry_size_bytes;
left_writer_count++;
Bits new_left_entry;
if (table_index > 2) {
// The new left entry is slightly different. Metadata is dropped, to
// save space, and the counter of the entry is written (sort_key). We
// use this instead of (y + pos + offset) since its smaller.
new_left_entry += Bits(entry_pos, pos_size);
new_left_entry += Bits(entry_offset, kOffsetSize);
new_left_entry += Bits(left_entry_counter, k + 1);
// If we are not taking up all the bits, make sure they are zeroed
if (Util::ByteAlign(new_left_entry.GetSize()) < left_entry_size_bytes * 8) {
new_left_entry +=
Bits(0, left_entry_size_bytes * 8 - new_left_entry.GetSize());
}
L_sort_manager->AddToCache(new_left_entry);
} else {
// For table one entries, we don't care about sort key, only x.
// Also, we don't use the sort manager, since we won't sort it.
new_left_entry += Bits(entry_metadata, left_metadata_size);
new_left_entry.ToBytes(new_left_entry_buf);
if (left_writer_count % left_writer_buf_entries == 0) {
tmp_1_disks[table_index - 1].Write(
left_writer,
left_writer_buf,
left_writer_buf_entries * left_entry_size_bytes);
left_writer += left_writer_buf_entries * left_entry_size_bytes;
}
}
// Mapped positions, so we can rewrite the R entry properly
new_positions[current_pos % kCachedPositionsSize] = left_entry_counter;
// Counter for new left entries written
++left_entry_counter;
}
}
}
// Write pointer lags behind the read pointer
int64_t write_pointer_pos = current_pos - kReadMinusWrite + 1;
// Only write entries for write_pointer_pos, if we are above 0, and there are
// actually R entries for that pos.
if (write_pointer_pos >= 0 &&
used_positions[write_pointer_pos % kCachedPositionsSize]) {
uint64_t new_pos = new_positions[write_pointer_pos % kCachedPositionsSize];
Bits new_pos_bin(new_pos, pos_size);
// There may be multiple R entries that share the write_pointer_pos, so write
// all of them
for (uint32_t counter = 0;
counter < old_counters[write_pointer_pos % kReadMinusWrite];
counter++) {
// Creates and writes the new right entry, with the cached data
uint64_t new_offset_pos = new_positions
[old_offsets[write_pointer_pos % kReadMinusWrite][counter] %
kCachedPositionsSize];
Bits new_right_entry =
table_index == 7
? Bits(old_sort_keys[write_pointer_pos % kReadMinusWrite][counter], k)
: Bits(
old_sort_keys[write_pointer_pos % kReadMinusWrite][counter],
k + 1);
new_right_entry += new_pos_bin;
// match_positions.push_back(std::make_pair(new_pos, new_offset_pos));
new_right_entry.AppendValue(new_offset_pos - new_pos, kOffsetSize);
// Calculate right entry pointer for output
right_entry_buf =
right_writer_buf +
(right_writer_count % right_writer_buf_entries) * right_entry_size_bytes;
right_writer_count++;
if (Util::ByteAlign(new_right_entry.GetSize()) < right_entry_size_bytes * 8) {
memset(right_entry_buf, 0, right_entry_size_bytes);
}
new_right_entry.ToBytes(right_entry_buf);
// Check for write out to disk
if (right_writer_count % right_writer_buf_entries == 0) {
tmp_1_disks[table_index].Write(
right_writer,
right_writer_buf,
right_writer_buf_entries * right_entry_size_bytes);
right_writer += right_writer_buf_entries * right_entry_size_bytes;
}
}
}
++current_pos;
}
new_table_sizes[table_index - 1] = left_entry_counter;
std::cout << "\tWrote left entries: " << left_entry_counter << std::endl;
table_timer.PrintElapsed("Total backpropagation time::");
tmp_1_disks[table_index].Write(
right_writer,
right_writer_buf,
(right_writer_count % right_writer_buf_entries) * right_entry_size_bytes);
right_writer += (right_writer_count % right_writer_buf_entries) * right_entry_size_bytes;
if (table_index != 7) {
R_sort_manager.reset();
}
// Truncates the right table
tmp_1_disks[table_index].Truncate(right_writer);
if (table_index == 2) {
// Writes remaining entries for table1
tmp_1_disks[table_index - 1].Write(
left_writer,
left_writer_buf,
(left_writer_count % left_writer_buf_entries) * left_entry_size_bytes);
left_writer += (left_writer_count % left_writer_buf_entries) * left_entry_size_bytes;
// Truncates the left table
tmp_1_disks[table_index - 1].Truncate(left_writer);
} else {
L_sort_manager->FlushCache();
R_sort_manager = std::move(L_sort_manager);
}
delete[] right_entry_buf_SM;
}
L_sort_manager.reset();
return new_table_sizes;
}
#endif // SRC_CPP_PHASE2_HPP