-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
228 lines (194 loc) · 10.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
import torch.nn.functional as F
import cv2 as cv
import numpy as np
import os
from glob import glob
from icecream import ic
from scipy.spatial.transform import Rotation as Rot
from scipy.spatial.transform import Slerp
from PIL import Image
import matplotlib.pyplot as plt
import re
import open3d as o3d
import struct
import collections
from models.read_write_model import *
# from plyfile import PlyData, PlyElement
# This function is borrowed from IDR: https://github.com/lioryariv/idr
def load_K_Rt_from_P(filename, P=None):
if P is None:
lines = open(filename).read().splitlines()
if len(lines) == 4:
lines = lines[1:]
lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
P = np.asarray(lines).astype(np.float32).squeeze()
out = cv.decomposeProjectionMatrix(P)
K = out[0]
R = out[1]
t = out[2]
K = K / K[2, 2]
intrinsics = np.eye(4)
intrinsics[:3, :3] = K
pose = np.eye(4, dtype=np.float32)
pose[:3, :3] = R.transpose() # not R but R^-1
pose[:3, 3] = (t[:3] / t[3])[:, 0]
return intrinsics, pose
class Dataset:
def __init__(self, conf):
super(Dataset, self).__init__()
print('Load data: Begin')
self.device = torch.device('cuda')
self.conf = conf
self.data_dir = conf.get_string('data_dir')
self.render_cameras_name = conf.get_string('render_cameras_name')
self.object_cameras_name = conf.get_string('object_cameras_name')
num_views = conf.get_string('n_views')
self.generator = torch.Generator(device='cuda')
self.generator.manual_seed(np.random.randint(1e9))
self.camera_outside_sphere = conf.get_bool('camera_outside_sphere', default=True)
self.scale_mat_scale = conf.get_float('scale_mat_scale', default=1.1)
camera_dict = np.load(os.path.join(self.data_dir, self.render_cameras_name))
self.camera_dict = camera_dict
self.images_lis = sorted(glob(os.path.join(self.data_dir, 'preprocessed/images/*.png')))
self.n_images = len(self.images_lis)
self.images_np = np.stack([cv.imread(im_name) for im_name in self.images_lis]) / 256.0
self.images_gray_np = np.stack([cv.imread(im_name, cv.IMREAD_GRAYSCALE) for im_name in self.images_lis]) / 255.0 # Read grayscale images
self.masks_lis = sorted(glob(os.path.join(self.data_dir, 'preprocessed/masks/*.png')))
self.masks_np = np.stack([cv.imread(im_name) for im_name in self.masks_lis]) / 256.0
# world_mat is a projection matrix from world to image
self.world_mats_np = [camera_dict['world_mat_%d' % idx].astype(np.float32) for idx in range(self.n_images)]
self.scale_mats_np = []
# scale_mat: used for coordinate normalization, we assume the scene to render is inside a unit sphere at origin.
self.scale_mats_np = [camera_dict['scale_mat_%d' % idx].astype(np.float32) for idx in range(self.n_images)]
self.intrinsics_all = []
self.pose_all = []
for scale_mat, world_mat in zip(self.scale_mats_np, self.world_mats_np):
P = world_mat @ scale_mat
P = P[:3, :4]
intrinsics, pose = load_K_Rt_from_P(None, P)
self.intrinsics_all.append(torch.from_numpy(intrinsics).float())
self.pose_all.append(torch.from_numpy(pose).float())
self.images = torch.from_numpy(self.images_np.astype(np.float32)).cuda() # [n_images, H, W, 3]
self.images_gray = torch.from_numpy(self.images_gray_np.astype(np.float32)).cuda()
self.masks = torch.from_numpy(self.masks_np.astype(np.float32)).cuda() # [n_images, H, W, 3]
self.intrinsics_all = torch.stack(self.intrinsics_all).to(self.device) # [n_images, 4, 4]
self.intrinsics_all_inv = torch.inverse(self.intrinsics_all) # [n_images, 4, 4]
self.focal = self.intrinsics_all[0][0, 0]
self.pose_all = torch.stack(self.pose_all).to(self.device) # [n_images, 4, 4]
self.H, self.W = self.images.shape[1], self.images.shape[2]
self.image_pixels = self.H * self.W
pts_dir = os.path.join(self.data_dir, 'sfm_pts/points.npy')
view_id_dir = os.path.join(self.data_dir, 'sfm_pts/view_id.npy')
self.pts = torch.from_numpy(np.load(pts_dir)).cuda()
self.pts_view_id = np.load(view_id_dir, allow_pickle=True)
object_bbox_min = np.array([-1.01, -1.01, -1.01, 1.0])
object_bbox_max = np.array([ 1.01, 1.01, 1.01, 1.0])
# Object scale mat: region of interest to **extract mesh**
object_scale_mat = np.load(os.path.join(self.data_dir, self.object_cameras_name))['scale_mat_0']
object_bbox_min = np.linalg.inv(self.scale_mats_np[0]) @ object_scale_mat @ object_bbox_min[:, None]
object_bbox_max = np.linalg.inv(self.scale_mats_np[0]) @ object_scale_mat @ object_bbox_max[:, None]
self.object_bbox_min = object_bbox_min[:3, 0]
self.object_bbox_max = object_bbox_max[:3, 0]
if num_views == 'max':
self.num_views = self.n_images - 1
else:
self.num_views = int(num_views) - 1
with open(os.path.join(self.data_dir, "pair.txt")) as f:
pairs = f.readlines()
self.src_idx = []
for p in pairs:
splitted = p.split()[1:] # drop the first one since it is the ref img
fun = lambda s: int(s.split(".")[0])
self.src_idx.append(torch.tensor(list(map(fun, splitted))))
print('Load data: End')
def gen_rays_at(self, img_idx, resolution_level=1):
"""
Generate rays at world space from one camera.
"""
src_idx = self.src_idx[img_idx]
src_idx = src_idx[:9]
# src_idx = src_idx[-9:]
idx_list = torch.cat([torch.tensor(img_idx).unsqueeze(0), src_idx], dim=0)
poses_pair = self.pose_all[idx_list] # [store R^-1 and C]
intrinsics_pair = self.intrinsics_all[idx_list]
intrinsics_inv_pair = self.intrinsics_all_inv[idx_list]
images_gray_pair = self.images_gray[idx_list]
l = resolution_level
tx = torch.linspace(0, self.W - 1, self.W // l)
ty = torch.linspace(0, self.H - 1, self.H // l)
pixels_x, pixels_y = torch.meshgrid(tx, ty)
p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1) # W, H, 3
p = torch.matmul(self.intrinsics_all_inv[img_idx, None, None, :3, :3], p[:, :, :, None]).squeeze() # W, H, 3
rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # W, H, 3
rays_v = torch.matmul(self.pose_all[img_idx, None, None, :3, :3], rays_v[:, :, :, None]).squeeze() # W, H, 3
rays_o = self.pose_all[img_idx, None, None, :3, 3].expand(rays_v.shape) # W, H, 3
return rays_o.transpose(0, 1), rays_v.transpose(0, 1), intrinsics_pair, intrinsics_inv_pair, poses_pair, images_gray_pair
def gen_random_rays_at(self, img_idx, batch_size):
"""
Generate random rays at world space from one camera.
"""
src_idx = self.src_idx[img_idx]
src_idx = src_idx[:9]
# src_idx = src_idx[-9:]
idx_list = torch.cat([img_idx.clone().detach().unsqueeze(0), src_idx], dim=0).cuda()
poses_pair = self.pose_all[idx_list] # [store R^-1 and C]
intrinsics_pair = self.intrinsics_all[idx_list]
intrinsics_inv_pair = self.intrinsics_all_inv[idx_list]
images_gray_pair = self.images_gray[idx_list]
pixels_x = torch.randint(low=0, high=self.W, size=[batch_size])
pixels_y = torch.randint(low=0, high=self.H, size=[batch_size])
color = self.images[img_idx][(pixels_y, pixels_x)] # batch_size, 3
mask = self.masks[img_idx][(pixels_y, pixels_x)] # batch_size, 3
p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1).float() # batch_size, 3
p = torch.matmul(self.intrinsics_all_inv[img_idx, None, :3, :3], p[:, :, None]).squeeze() # batch_size, 3
rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # batch_size, 3
rays_v = torch.matmul(self.pose_all[img_idx, None, :3, :3], rays_v[:, :, None]).squeeze() # batch_size, 3
rays_o = self.pose_all[img_idx, None, :3, 3].expand(rays_v.shape) # batch_size, 3
return torch.cat([rays_o, rays_v, color, mask[:, :1]], dim=-1).cuda(), intrinsics_pair, intrinsics_inv_pair, poses_pair, images_gray_pair # batch_size, 10
def gen_rays_between(self, idx_0, idx_1, ratio, resolution_level=1):
"""
Interpolate pose between two cameras.
"""
l = resolution_level
tx = torch.linspace(0, self.W - 1, self.W // l)
ty = torch.linspace(0, self.H - 1, self.H // l)
pixels_x, pixels_y = torch.meshgrid(tx, ty)
p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1) # W, H, 3
p = torch.matmul(self.intrinsics_all_inv[0, None, None, :3, :3], p[:, :, :, None]).squeeze() # W, H, 3
rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # W, H, 3
trans = self.pose_all[idx_0, :3, 3] * (1.0 - ratio) + self.pose_all[idx_1, :3, 3] * ratio
pose_0 = self.pose_all[idx_0].detach().cpu().numpy()
pose_1 = self.pose_all[idx_1].detach().cpu().numpy()
pose_0 = np.linalg.inv(pose_0)
pose_1 = np.linalg.inv(pose_1)
rot_0 = pose_0[:3, :3]
rot_1 = pose_1[:3, :3]
rots = Rot.from_matrix(np.stack([rot_0, rot_1]))
key_times = [0, 1]
slerp = Slerp(key_times, rots)
rot = slerp(ratio)
pose = np.diag([1.0, 1.0, 1.0, 1.0])
pose = pose.astype(np.float32)
pose[:3, :3] = rot.as_matrix()
pose[:3, 3] = ((1.0 - ratio) * pose_0 + ratio * pose_1)[:3, 3]
pose = np.linalg.inv(pose)
rot = torch.from_numpy(pose[:3, :3]).cuda()
trans = torch.from_numpy(pose[:3, 3]).cuda()
rays_v = torch.matmul(rot[None, None, :3, :3], rays_v[:, :, :, None]).squeeze() # W, H, 3
rays_o = trans[None, None, :3].expand(rays_v.shape) # W, H, 3
return rays_o.transpose(0, 1), rays_v.transpose(0, 1)
def near_far_from_sphere(self, rays_o, rays_d):
a = torch.sum(rays_d**2, dim=-1, keepdim=True)
b = 2.0 * torch.sum(rays_o * rays_d, dim=-1, keepdim=True)
mid = 0.5 * (-b) / a
near = mid - 1.0
far = mid + 1.0
return near, far
def image_at(self, idx, resolution_level):
img = cv.imread(self.images_lis[idx])
return (cv.resize(img, (self.W // resolution_level, self.H // resolution_level))).clip(0, 255)
def gen_pts_view(self, img_idx):
pts_view_id = self.pts_view_id[img_idx]
pts_view = self.pts[pts_view_id]
return pts_view