forked from fe1ixxu/ALMA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_llmmt.py
228 lines (196 loc) · 9.42 KB
/
run_llmmt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env python
# coding=utf-8
import logging
import copy
import math
import os
import sys
import json
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional
import numpy as np
import datasets
import evaluate
import torch
from datasets import load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
Seq2SeqTrainingArguments,
default_data_collator,
is_torch_tpu_available,
set_seed,
LlamaTokenizer,
)
from transformers.testing_utils import CaptureLogger
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training, TaskType
from peft import PeftModel, PeftConfig
from collections import defaultdict
from transformers.trainer_callback import TrainerCallback
from datasets import concatenate_datasets, interleave_datasets
from utils.trainer_llmmt import LlmmtTrainer
from utils.utils import LANG_TABLE, load_mmt_dataset, get_preprocessed_data, clean_outputstring, load_a_single_text_file, load_tokenizer, load_model, SavePeftModelCallback, get_key_suffix
from utils.arguments import ModelArguments, DataTrainingArguments
from utils.ul2collator import DataCollatorForUL2
logger = logging.getLogger(__name__)
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
import datetime
torch.distributed.init_process_group("nccl", init_method=None, timeout=datetime.timedelta(seconds=1800), world_size=- 1, rank=- 1, store=None, group_name='', pg_options=None)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_llmmt", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Get the datasets
pairs = set(data_args.language_pairs.split(","))
train_raw_data, valid_raw_data, test_raw_data = None, None, None
if data_args.text_test_file:
test_raw_data = load_a_single_text_file(pairs, data_args, model_args)
elif data_args.mmt_data_path:
train_raw_data, valid_raw_data, test_raw_data = load_mmt_dataset(pairs, data_args, model_args, training_args, logger)
if data_args.mono_data_path:
train_raw_data = load_dataset(
"json",
data_files=data_args.mono_data_path,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
streaming=data_args.streaming,
)
if data_args.oscar_data_path:
oscar_langs = data_args.oscar_data_lang.split(",")
if data_args.interleave_probs:
interleave_probs = [float(p) for p in data_args.interleave_probs.split(",")]
else:
interleave_probs = [1/len(oscar_langs)] * len(oscar_langs)
oscar_langs = [x for x, _ in sorted(zip(oscar_langs, interleave_probs), key=lambda zippair: zippair[1])]
interleave_probs = sorted(interleave_probs)
train_raw_data = []
for lg in oscar_langs:
train_raw_data.append(
load_dataset(
data_args.oscar_data_path,
lg,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
streaming=data_args.streaming,
)['train']
)
train_raw_data = interleave_datasets(train_raw_data, probabilities=interleave_probs, seed=training_args.seed, stopping_strategy="all_exhausted")
# load tokenizer
set_seed(training_args.seed)
tokenizer = load_tokenizer(data_args, model_args, training_args, logger)
if data_args.use_ul2:
assert data_args.use_prefix_lm, "Must enable use prefix language model"
shots_eval_dict = {}
if data_args.few_shot_eval_path:
for lg_pair in test_raw_data.keys():
pair_shot_path = os.path.join(data_args.few_shot_eval_path, f"shots.{lg_pair}.json")
if not os.path.isfile(pair_shot_path):
ValueError(f"Make sure the language pair {lg_pair} is in the few shot eval folder!")
with open(pair_shot_path) as f:
shots_eval_dict[lg_pair] = json.load(f)
train_datasets, eval_datasets, test_datasets = get_preprocessed_data(train_raw_data, valid_raw_data, test_raw_data, pairs, tokenizer, shots_eval_dict, data_args, training_args, model_args)
# Load model
model = load_model(data_args, model_args, training_args, tokenizer, logger)
collate_fn = DataCollatorForUL2(model, tokenizer) if data_args.use_ul2 else default_data_collator
# Initialize our Trainer
trainer = LlmmtTrainer(
model=model,
args=training_args,
train_dataset=train_datasets if training_args.do_train else None,
eval_dataset=eval_datasets if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=collate_fn,
callbacks=[SavePeftModelCallback] if model_args.use_peft else None,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_state()
if model_args.use_peft:
model.save_pretrained(training_args.output_dir)
else:
trainer.save_model() # Saves the tokenizer too for easy upload
# Prediction
if training_args.do_predict:
trainer.args.prediction_loss_only = False
lg_pairs = sorted(test_datasets.keys()) # make sure each device print in the same order
for lg_pair in lg_pairs:
test_dataset = test_datasets[lg_pair]
src_lang, tgt_lang = lg_pair.split("-")
logger.info(f"*** Prediction for {lg_pair}***")
preds, _, _ = trainer.predict(
test_dataset=test_dataset,
max_new_tokens=data_args.max_new_tokens,
num_beams=data_args.num_beams,
metric_key_prefix="test",
use_cache=True,
)
# Replace -100s used for padding as we can't decode them
if int(torch.cuda.current_device()) == 0:
preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
# Some simple post-processing
decoded_preds = [pred.strip() for pred in decoded_preds]
for idx in range(data_args.display_num_translations):
print("------------------------")
print(decoded_preds[idx])
with open(os.path.join(training_args.output_dir, f"test-{src_lang}-{tgt_lang}{data_args.suffix_eval_file}"), "w", encoding="utf-8") as f:
suffix = get_key_suffix(tgt_lang, data_args)
if len(shots_eval_dict) != 0:
split_idx = len(shots_eval_dict[lg_pair]) + 1
else:
split_idx = 1
for pred in decoded_preds:
pred = clean_outputstring(pred, suffix, logger, split_idx)
f.writelines([pred, "\n"])
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()